Publications by authors named "Calzolari A"

This article discusses a pulmonary artery pseudoaneurysm (PAP) formation following pulmonary artery catheter (PAC) placement for cardiac surgery. The patient, an 82-year-old female with a history of hypertension and chronic heart failure, underwent elective mitral and tricuspid valve surgery. After surgery, bleeding was observed in the endotracheal tube, indicating a potential complication.

View Article and Find Full Text PDF

4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY)-based molecules have emerged as interesting materials for optoelectronic applications due to the possibility to easily fine-tune their photophysical and optical properties, dominated by two main absorption bands in the visible range. However, no studies have been reported on the nature of these spectral features. By means of ultrafast spectroscopy, we detect intramolecular energy transfer in a spin-coated film of di-thieno-phenyl BODIPY (DTPBDP) dispersed in a polystyrene matrix after pumping the high-energy absorption band.

View Article and Find Full Text PDF

This article presents a comprehensive investigation into the functionalization of methoxyphenylazobenzene using electron-directing groups located at the position relative to the azo group. Spectroscopic analysis of -functionalized azobenzenes reveals that the incorporation of electron-withdrawing units significantly influences the absorption spectra of both and isomers, while electron-donating functionalities lead to more subtle changes. The thermal relaxation process from to result in almost twice as prolonged for electron-withdrawing functionalized azobenzenes compared to their electron-rich counterparts.

View Article and Find Full Text PDF

The need for improved functionalities in extreme environments is fuelling interest in high-entropy ceramics. Except for the computational discovery of high-entropy carbides, performed with the entropy-forming-ability descriptor, most innovation has been slowly driven by experimental means. Hence, advancement in the field needs more theoretical contributions.

View Article and Find Full Text PDF

Blatter radical derivatives are very attractive due to their potential applications, ranging from batteries to quantum technologies. In this work, we focus on the latest insights regarding the fundamental mechanisms of radical thin film (long-term) degradation, by comparing two Blatter radical derivatives. We find that the interaction with different contaminants (such as atomic H, Ar, N, and O and molecular H, N, O, HO, and NH) affects the chemical and magnetic properties of the thin films upon air exposure.

View Article and Find Full Text PDF

Herein we report the synthesis and characterization of spinel copper gallate (CuGaO) nanocrystals (NCs) with an average size of 3.7 nm via a heat-up colloidal reaction. CuGaO NCs have a band gap of ∼2.

View Article and Find Full Text PDF

Intermolecular interactions modulate the electro-optical properties of molecular materials and the nature of low-lying exciton states. Molecular materials composed by oligoacenes are extensively investigated for their semiconducting and optoelectronic properties. Here, we analyze the exciton states derived from time-dependent density functional theory (TDDFT) calculations for two oligoacene model aggregates: naphthalene and anthracene dimers.

View Article and Find Full Text PDF

Discovering multifunctional materials with tunable plasmonic properties, capable of surviving harsh environments is critical for advanced optical and telecommunication applications. We chose high-entropy transition-metal carbides because of their exceptional thermal, chemical stability, and mechanical properties. By integrating computational thermodynamic disorder modeling and time-dependent density functional theory characterization, we discovered a crossover energy in the infrared and visible range, corresponding to a metal-to-dielectric transition, exploitable for plasmonics.

View Article and Find Full Text PDF

Background And Objective: The analysis of Editorials is a little explored topic, which can facilitate the understanding of historical processes and changes in Psychiatry. In the case of de Vertex Revista Argentina de Psiquiatría, the Editorials were written by the same person for 30 years. The most frequently used thematic areas were studied, using graph theory, to characterize the orientation of the editorial lines.

View Article and Find Full Text PDF

The concept of order in disordered materials is the key to controlling the mechanical, electrical, and chemical properties of amorphous compounds widely exploited in industrial applications and daily life. Rather, it is far from being understood. Here, we propose a multi-technique numerical approach to study the order/disorder of amorphous materials on both the short- and the medium-range scale.

View Article and Find Full Text PDF

We theoretically and experimentally demonstrate a strong and tunable optical anisotropy in epitaxially-grown VO thin films. Using a combination of temperature-dependent X-ray diffraction, spectroscopic ellipsometry measurements and first-principle calculations, we reveal that these VO thin films present an ultra-large birefringence (Δ > 0.9).

View Article and Find Full Text PDF

Triplet ground-state organic molecules are of interest with respect to several emerging technologies but usually show limited stability, especially as thin films. We report an organic diradical, consisting of two Blatter radicals, that possesses a triplet ground state with a singlet-triplet energy gap, Δ ≈ 0.4-0.

View Article and Find Full Text PDF

The fabrication of multifunctional switches is a fundamental step in the development of nanometer-scale molecular spintronic devices. The anchoring of active organic radicals on gold nanoparticles (AuNPs) surface is little studied and the realization of AuNPs-based switches remains extremely challenging. We report the first demonstration of a surface molecular switch based on AuNPs decorated with persistent perchlorotriphenylmethyl (PTM) radicals.

View Article and Find Full Text PDF

To understand the influence of interchromophoric arrangements on photo-induced processes and optical properties of aggregates, it is fundamental to assess the contribution of local excitations [charge transfer (CT) and Frenkel (FE)] to exciton states. Here, we apply a general procedure to analyze the adiabatic exciton states derived from time-dependent density functional theory calculations, in terms of diabatic states chosen to coincide with local excitations within a restricted orbital space. In parallel, motivated by the need of cost-effective approaches to afford the study of larger aggregates, we propose to build a model Hamiltonian based on calculations carried out on dimers composing the aggregate.

View Article and Find Full Text PDF

Inorganic lead halide perovskites are promising candidates for optoelectronic applications, due to their high photoluminescence quantum yield and narrow emission line widths. Particularly attractive is the possibility to vary the bandgap as a function of the halide composition and the size or shape of the crystals at the nanoscale. Here we present an aberration-corrected scanning transmission electron microscopy (STEM) and monochromated electron energy-loss spectroscopy (EELS) study of extended nanosheets of CsPbBr3.

View Article and Find Full Text PDF

Fibre reinforced plastics have tailorable and superior mechanical characteristics compared to metals and can be used to construct relevant components such as primary crash structures for automobiles. However, the absence of standardized methodologies to predict component level damage has led to their underutilization as compared to their metallic counterparts, which are used extensively to manufacture primary crash structures. This paper presents a methodology that uses crashworthiness results from in-plane impact tests, conducted on carbon-fibre reinforced epoxy flat plates, to tune the related material card in Radioss using two different parametric identification techniques: global and adaptive response search methods.

View Article and Find Full Text PDF

This study deals with the development and optimization of hybrid composites integrating microcrystalline cellulose and short basalt fibers in a polypropylene (PP) matrix to maximize the mechanical properties of resulting composites. To this aim, the effects of two different coupling agents, endowed with maleic anhydride (MA-g(grafted)-PP) and acrylic acid (AA-g-PP) functionalities, on the composite properties were investigated as a function of their amount. Tensile, flexural, impact and heat deflection temperature tests highlighted the lower reactivity and effectiveness of AA-g-PP, regardless of reinforcement type.

View Article and Find Full Text PDF

The use of wood fibers is a deeply investigated topic in current scientific research and one of their most common applications is as filler for thermoplastic polymers. The resulting material is a biocomposite, known as a Wood Polymer Composite (WPC). For increasing the sustainability and reducing the cost, it is convenient to increase the wood fiber content as much as possible, so that the polymeric fraction within the composite is thereby reduced.

View Article and Find Full Text PDF

Pathologies associated with calcified tissue, such as osteoporosis, demand in vivo and/or in situ spectroscopic analysis to assess the role of chemical substitutions in the inorganic component. High energy X-ray or NMR spectroscopies are impractical or damaging in biomedical conditions. Low energy spectroscopies, such as IR and Raman techniques, are often the best alternative.

View Article and Find Full Text PDF

The definition of plasmon at the microscopic scale is far from being understood. Yet, it is very important to recognize plasmonic features in optical excitations, as they can inspire new applications and trigger new discoveries by analogy with the rich phenomenology of metal nanoparticle plasmons. Recently, the concepts of plasmonicity index and the generalized plasmonicity index (GPI) have been devised as computational tools to quantify the plasmonic nature of optical excitations.

View Article and Find Full Text PDF

In a first-principles study based on density functional theory and many-body perturbation theory, we address the interplay between intra- and intermolecular interactions in a J-aggregate formed by push-pull organic dyes by investigating its electronic and optical properties. We find that the most intense excitation dominating the spectral onset of the aggregate, i.e.

View Article and Find Full Text PDF

By using a multidisciplinary and multitechnique approach, we have addressed the issue of attaching a molecular quantum bit to a real surface. First, we demonstrate that an organic derivative of the pyrene-Blatter radical is a potential molecular quantum bit. Our study of the interface of the pyrene-Blatter radical with a copper-based surface reveals that the spin of the interface layer is not canceled by the interaction with the surface and that the Blatter radical is resistant in presence of molecular water.

View Article and Find Full Text PDF

Doping semiconductor nanocrystals is a powerful tool to impart new and beneficial optical and electrical properties to the host nanocrystals. Doping has been used to improve the performances of nanocrystal-based devices in applications as diverse as optics, magnetism, electronics, catalysis and sensing. In this work we present a low temperature colloidal synthesis of zinc sulfide (ZnS) nanocrystals doped with indium.

View Article and Find Full Text PDF

J-aggregates are a class of low-dimensional molecular crystals which display enhanced interaction with light. These systems show interesting optical properties as an intense and narrow red-shifted absorption peak (J-band) with respect to the spectrum of the corresponding monomer. The need to theoretically investigate optical excitations in J-aggregates is twofold: a thorough first-principles description is still missing and a renewed interest is rising recently in understanding the nature of the J-band, in particular regarding the collective mechanisms involved in its formation.

View Article and Find Full Text PDF

VO is a unique phase change material with strongly anisotropic electronic properties. Recently, samples have been prepared that present a co-existence of phases and thus form metal-insulator junctions of the same chemical compound. Using first principles calculations, the optical properties of metallic and semiconducting VO are here discussed to design self-contained natural optical metamaterials, avoiding coupling with other dielectric media.

View Article and Find Full Text PDF