Several positron emitting radioisotopes such as (11)C and (13)N can be used in plant biology research. The (11)CO(2) tracer is used to facilitate plant biology research toward optimization of plant productivity, biofuel development and carbon sequestration in biomass. Positron emission tomography (PET) imaging has been used to study carbon transport in live plants using (11)CO(2).
View Article and Find Full Text PDFThe objective of this paper is threefold: (1) to establish sensitivity of XRQA and EBT radiochromic films to fast neutron exposure; (2) to develop a film response to radiation dose calibration curve and (3) to investigate a two-dimensional (2D) film dosimetry technique for use in establishing an experimental setup for a radiobiological irradiation of mice and to assess the dose to the mice in this setup. The films were exposed to a 10 MeV neutron beam via the (2)H(d,n)(3)He reaction. The XRQA film response was a factor of 1.
View Article and Find Full Text PDFShort-lived positron-emitting radiotracer techniques provide time-dependent data that are critical for developing models of metabolite transport and resource distribution in plants and their microenvironments. Until recently these techniques were applied to measure radiotracer accumulation in coarse regions along transport pathways. The recent application of positron emission tomography (PET) techniques to plant research allows for detailed quantification of real-time metabolite dynamics on previously unexplored spatial scales.
View Article and Find Full Text PDFThis paper describes the implementation of neutron-stimulated emission computed tomography (NSECT) for non-invasive imaging and reconstruction of a multi-element phantom. The experimental apparatus and process for acquisition of multi-spectral projection data are described along with the reconstruction algorithm and images of the two elements in the phantom. Independent tomographic reconstruction of each element of the multi-element phantom was performed successfully.
View Article and Find Full Text PDF