Publications by authors named "Calvin Jerde"

Background: The COVID-19 pandemic emphasized an urgent need for devices used in the self-collection of biospecimens in an evolving patient care system. The mailing of biospecimen self-collection kits to patients, with samples returned via mail, provides a more convenient testing regimen, but could also impart patient sampling variabilities. User compliance with device directions is central to downstream testing of collected biospecimens and clear instructions are central to this goal.

View Article and Find Full Text PDF
Article Synopsis
  • DNA methylation is a key epigenetic change in humans, used as a biomarker in diagnosing various diseases, but current methods overlook age and sex-specific patterns.
  • The study analyzed DNA methylation from blood samples of healthy individuals and patients with specific syndromes, introducing a Generalized Additive Model to assess 700,000 CpG sites while accounting for age and sex differences.
  • The research achieved a high prediction accuracy of 0.96 in identifying abnormal methylation patterns, demonstrating the effectiveness of their custom machine learning pipeline for diagnosing potential congenital disorders.
View Article and Find Full Text PDF

In August 2020, the Food and Drug Administration (FDA) Emergency Use Authorization (EUA) for COVID-19 convalescent plasma (CCP) specified 12 authorized serologic assays and associated assay-specific cutoff values for the selection of high-titer CCP for use in hospitalized patients. The criteria used for establishing these cutoff values remains unclear. Here, we compare the overall agreement and concordance of five serologic assays included in the August 2020 FDA EUA at both the manufacturer-recommended qualitative cutoff thresholds and at the FDA-indicated thresholds for high-titer CCP, using serum samples collected as part of the CCP Expanded Access Program (EAP).

View Article and Find Full Text PDF

Importance: Immune-mediated rippling muscle disease (iRMD) is a rare myopathy characterized by wavelike muscle contractions (rippling) and percussion- or stretch-induced muscle mounding. A serological biomarker of this disease is lacking.

Objective: To describe a novel autoantibody biomarker of iRMD and report associated clinicopathological characteristics.

View Article and Find Full Text PDF
Article Synopsis
  • - COVID-19 vaccines are becoming more accessible, but accurate and quick testing is still essential for controlling the spread of the virus, especially with the emergence of new variants.
  • - The study identifies challenges in detecting certain viral variants using traditional testing methods like qRT-PCR and immunoassays, which can overlook changes in the virus's nucleocapsid protein due to sequence variants.
  • - By modifying the LC-MS/MS method and employing proteomic analysis, researchers demonstrated a way to effectively detect these variants, emphasizing the need for adaptable testing methods as the virus evolves.
View Article and Find Full Text PDF

Longitudinal studies assessing durability of the anti-severe acute respiratory syndrome coronavirus 2 (anti-SARS-CoV-2) humoral immune response have generated conflicting results. This has been proposed to be due to differences in patient populations, the lack of standardized methodologies, and the use of assays that measure distinct aspects of the humoral response. SARS-CoV-2 antibodies were serially measured in sera from a cohort of 44 well-characterized convalescent plasma donors over 120 days post-COVID-19 symptom onset, utilizing eight assays, which varied according to antigen source, the detected antibody isotype, and the activity measured (i.

View Article and Find Full Text PDF

We here describe the development and validation of IMMUNO-COV™, a high-throughput clinical test to quantitatively measure SARS-CoV-2-neutralizing antibodies, the specific subset of anti-SARS-CoV-2 antibodies that block viral infection. The test measures the capacity of serum or purified antibodies to neutralize a recombinant Vesicular Stomatitis Virus (VSV) encoding the SARS-CoV-2 spike glycoprotein. This recombinant virus (VSV-SARS-CoV-2-S-Δ19CT) induces fusion in Vero cell monolayers, which is detected as luciferase signal using a dual split protein (DSP) reporter system.

View Article and Find Full Text PDF

Deleterious variants in dihydropyrimidine dehydrogenase (DPD, DPYD gene) can be highly predictive of clinical toxicity to the widely prescribed chemotherapeutic 5-fluorouracil (5-FU). However, there are very limited data pertaining to the functional consequences of the >450 reported no-synonymous DPYD variants. We developed a DPYD-specific variant classifier (DPYD-Varifier) using machine learning and in vitro functional data for 156 missense DPYD variants.

View Article and Find Full Text PDF

Uracil N-glycosylase 2 (UNG2), the nuclear isoform of UNG, catalyzes the removal of uracil or 5-fluorouracil lesions that accumulate in DNA following treatment with the anticancer agents 5-fluorouracil and 5-fluorodeoxyuridine (floxuridine), a 5-fluorouracil metabolite. By repairing these DNA lesions before they can cause cell death, UNG2 promotes cancer cell survival and is therefore critically involved in tumor resistance to these agents. However, the mechanisms by which UNG2 is regulated remain unclear.

View Article and Find Full Text PDF

The antimetabolite 5-fluorouracil (5-FU) is one of the most widely used chemotherapy drugs. Dihydropyrimidine dehydrogenase (DPD) is a major determinant of 5-FU response and toxicity. Although DPYD variants may affect 5-FU metabolism, they do not completely explain the reported variability in DPD function or the resultant differences in treatment response.

View Article and Find Full Text PDF

Dihydropyrimidine dehydrogenase (DPD, encoded by DPYD) is the rate-limiting enzyme in the uracil catabolic pathway and has a pivotal role in the pharmacokinetics of the commonly prescribed anticancer drug 5-fluorouracil (5-FU). Deficiency of DPD, whether due to inadequate expression or deleterious variants in DPYD, has been linked to severe toxic responses to 5-FU. Little is known about the mechanisms governing DPD expression in the liver.

View Article and Find Full Text PDF

Exogenous brain-derived neurotrophic factor (BDNF) enhances Ca(2+) signaling and cell proliferation in human airway smooth muscle (ASM), especially with inflammation. Human ASM also expresses BDNF, raising the potential for autocrine/paracrine effects. The mechanisms by which ASM BDNF secretion occurs are not known.

View Article and Find Full Text PDF