Annu Int Conf IEEE Eng Med Biol Soc
July 2023
When designing a fully implantable brain-machine interface (BMI), the primary aim is to detect as much neural information as possible with as few channels as possible. In this paper, we present a total unique variance analysis (TUVA) for evaluating the signal unique to each channel that cannot be predicted by linear combination of signals on other channels. TUVA is a statistical method for determining the total unique variance in multidimensional data, ordering channels from most to least informative, to aid in the design of maximally-efficacious BMIs.
View Article and Find Full Text PDFReal-time closed-loop control of neuromodulation devices requires long-term monitoring of neural activity in the peripheral nervous system. Although many signal extraction methods exist, few are both clinically viable and designed for extracting small signals from fragile peripheral visceral nerves. Here, we report that our minimally invasive recording and analysis technology extracts low to negative signal to noise ratio (SNR) neural activity from a visceral nerve with a high degree of specificity for fiber type and class.
View Article and Find Full Text PDFVagus nerve stimulation (VNS) has the potential to treat various peripheral dysfunctions, but the traditional cuff electrodes for VNS are susceptible to off-target effects. Microelectrodes may enable highly selective VNS that can mitigate off-target effects, but they suffer from the increased impedance. Recent studies on microelectrodes with non-Euclidean geometries have reported higher energy efficiency in neural stimulation applications.
View Article and Find Full Text PDFMany receptive fields in the early visual system show standard (center-surround) structure and can be analyzed using simple drifting patterns and a difference-of-Gaussians (DoG) model, which treats the receptive field as a linear filter of the visual image. But many other receptive fields show nonlinear properties such as selectivity for direction of movement. Such receptive fields are typically studied using discrete stimuli (moving or flashed bars and edges) and are modelled according to the features of the visual image to which they are most sensitive.
View Article and Find Full Text PDFNeuromodulation of visceral nerves is being intensively studied for treating a wide range of conditions, but effective translation requires increasing the efficacy and predictability of neural interface performance. Here we use computational models of rat visceral nerve to predict how neuroanatomical variability could affect both electrical stimulation and recording with an experimental planar neural interface.We developed a hybrid computational pipeline,sceralervensembleecording andtimulation (ViNERS), to couple finite-element modelling of extracellular electrical fields with biophysical simulations of individual axons.
View Article and Find Full Text PDFThe pace of research and development in neuroscience, neurotechnology, and neurorehabilitation is rapidly accelerating, with the number of publications doubling every 4.2 years. Maintaining this progress requires technological standards and scientific reporting guidelines to provide frameworks for communication and interoperability.
View Article and Find Full Text PDFBioelectronic medical devices are well established and widely used in the treatment of urological dysfunction. Approved targets include the sacral S3 spinal root and posterior tibial nerve, but an alternate target is the group of pelvic splanchnic nerves, as these contain sacral visceral sensory and autonomic motor pathways that coordinate storage and voiding functions of the bladder. Here, we developed a device suitable for long-term use in an awake rat model to study electrical neuromodulation of the pelvic nerve (homolog of the human pelvic splanchnic nerves).
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2020
Bioelectronic neural interfaces that deliver adaptive therapeutic stimulation in an intelligent manner must be able to sense and stimulate activity within the same nerve. Existing minimally-invasive peripheral neural interfaces can provide a read-out of the aggregate level of activity via electrical recordings of nerve activity, but these recordings are limited in terms of their specificity. Computational simulations can provide fine-grained insight into the contributions of different neural populations to the extracellular recording, but integration of the signals from individual nerve fibers requires knowledge of spread of current in the complex (heterogenous, anisotropic) extracellular space.
View Article and Find Full Text PDFIn primates and carnivores, the main laminae of the dorsal lateral geniculate nucleus (LGN) receive monocular excitatory input in an eye-alternating fashion. There is also evidence that nondominant eye stimulation can reduce responses to dominant eye stimulation and that a subset of LGN cells in the koniocellular (K) layers receives convergent binocular excitatory input from both eyes. What is not known is how the two eye inputs summate in the K layers of LGN.
View Article and Find Full Text PDFThe koniocellular (K) layers of the primate dorsal lateral geniculate nucleus house a variety of visual receptive field types, not all of which have been fully characterized. Here we made single-cell recordings targeted to the K layers of diurnal New World monkeys (marmosets). A subset of recorded cells was excited by both increments and decrements of light intensity (on/off-cells).
View Article and Find Full Text PDFIEEE Trans Neural Syst Rehabil Eng
December 2017
Visual prostheses are now an available mobility aid for patients blinded by degenerative retinal diseases. However, the spatial resolution of existing devices is still insufficient to deliver normal levels of mobility vision without stimulation strategies, which enable existing devices to deliver several different percepts per stimulation site. A stimulation strategy, in which field shaping is achieved by incorporating multipolar (bipolar and tripolar) stimulation could convey additional information to a user of a visual prosthesis, as compared with monopolar stimulation, is investigated.
View Article and Find Full Text PDFThe capacity to quickly and accurately simulate extracellular stimulation of neurons is essential to the design of next-generation neural prostheses. Existing platforms for simulating neurons are largely based on finite-difference techniques; due to the complex geometries involved, the more powerful spectral or differential quadrature techniques cannot be applied directly. This paper presents a mathematical basis for the application of a spectral element method to the problem of simulating the extracellular stimulation of retinal neurons, which is readily extensible to neural fibers of any kind.
View Article and Find Full Text PDFPurpose: To investigate the efficacy of electric field shaping in modulating the extent and activation threshold in retinal neurostimulation. This study aims to quantify the interference of neighboring stimulation sites by assessing the shift in the activation threshold produced by a concomitant interfering stimulus.
Methods: Electrical stimuli were applied to healthy retinae in a feline model (n = 4) using a 24-channel electrode array surgically implanted in the suprachoroidal space.
Annu Int Conf IEEE Eng Med Biol Soc
October 2016
Visual prostheses are becoming a reality as a therapy to restore functional vision to the blind. New stimulation strategies and novel electrode designs are contributing to accelerate the development of such devices triggering the interest of scientists, clinicians and the blind community worldwide. In this scenario, there is a need for large animal models that are suitable for preclinical testing of retinal neuroprostheses.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
June 2016
We present a computational model of the optic pathway which has been adapted to simulate cortical responses to visual-prosthetic stimulation. This model reproduces the statistically observed distributions of spikes for cortical recordings of sham and maximum-intensity stimuli, while simultaneously generating cellular receptive fields consistent with those observed using traditional visual neuroscience methods. By inverting this model to generate candidate phosphenes which could generate the responses observed to novel stimulation strategies, we hope to aid the development of said strategies in-vivo before being deployed in clinical settings.
View Article and Find Full Text PDFVisual prosthetics is an expanding subfield of functional electrical stimulation which has gained increased interest recently in light of new advances in treatments and technology. These treatments and technology represent a major improvement over prior art, but are still subject to a host of limitations which are dependent on the manner in which one approaches the topic of visual prosthetics. These limitations pose new research challenges whose solutions are directly applicable to the well-being of blind individuals everywhere.
View Article and Find Full Text PDF