Prostate cancer (PC) is second-leading cancer in men, with limited treatment options available for men with advanced and metastatic PC. Prostate-specific antigen (PSA) and prostate-specific membrane antigen (PSMA) have been exploited as therapeutic targets in PC due to their upregulation in the advanced stages of the disease. To date, several PSA- and PSMA-activatable prodrugs have been developed to reduce the systemic toxicity of existing chemotherapeutics.
View Article and Find Full Text PDFThis study investigates the effect of PD1 blockade on the therapeutic efficacy of novel doxorubicin-loaded temperature-sensitive liposomes. Herein, we report photothermally-activated, low temperature-sensitive magnetoliposomes (mLTSL) for efficient drug delivery and magnetic resonance imaging (MRI). The mLTSL were prepared by embedding small nitrodopamine palmitate (NDPM)-coated iron oxide nanoparticles (IO NPs) in the lipid bilayer of low temperature-sensitive liposomes (LTSL), using lipid film hydration and extrusion.
View Article and Find Full Text PDFThe present work describes the engineering of anti-PSMA peptide-decorated exosome mimetics (EMs) targeting advanced prostate cancer (PC). The targeted EMs were produced from anti-PSMA peptide, WQPDTAHHWATL, expressing U937 monoblastic cells, followed by successive extrusion cycles. The engineered EMs were nanosized, produced at a high yield, and displayed the anti-PSMA peptide, exosomal markers and monocytes proteins on their surface.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
February 2021
Lysolipid-containing thermosensitive liposomes (LTSL) have gained attention for triggered release of chemotherapeutics. Superparamagnetic iron oxide nanoparticles (SPION) offers multimodal imaging and hyperthermia therapy opportunities as a promising theranostic agent. Combining LTSL with SPION may further enhance their performance and functionality of LTSL.
View Article and Find Full Text PDFThe majority of the clinically approved iron oxide nanoparticles (IO NPs) used as contrast agents for magnetic resonance imaging (MRI) have been withdrawn from the market either due to safety concerns or lack of profits. To address this challenge, liposomes have been used to prepare IO-based contrast agents. We studied the influence of different phospholipids on the relaxivity () values of magneto-liposomes (MLs) containing magnetic NPs in the bilayer, where a strong correlation between the bilayer fluidity and is clearly shown.
View Article and Find Full Text PDFThe presented protocol enables a high-throughput continuous preparation of low temperature-sensitive liposomes (LTSLs), which are capable of loading chemotherapeutic drugs, such as doxorubicin (DOX). To achieve this, an ethanolic lipid mixture and ammonium sulfate solution are injected into a staggered herringbone micromixer (SHM) microfluidic device. The solutions are rapidly mixed by the SHM, providing a homogeneous solvent environment for liposomes self-assembly.
View Article and Find Full Text PDFIndocyanine green (ICG) is an FDA-approved near-infrared fluorescent dye that has been used in optical imaging and photothermal therapy. Its rapid clearance and photo-degradation have limited its application. ICG pharmacokinetics and biodistribution have been improved via liposomal encapsulation, while its photothermal stability has been enhanced by ICG J-aggregate (IJA) formation.
View Article and Find Full Text PDFPreparation of lipid-based drug delivery systems by microfluidics has been increasingly popular, due to the reproducible, continuous and scalable nature of the microfluidic process. Despite exciting development in the field, versatility and superiority of microfluidics over conventional methods still need further evidence, since preparing clinically-relevant sterically stabilised liposomes has been lacking. The present study describes the optimisation of PEGylated liposomal formulations of various rigidity using staggered herringbone micromixer (SHM).
View Article and Find Full Text PDF