We present a Monte Carlo approach that allows us to easily implement Lynden-Bell (LB) entropy maximization for an arbitrary initial particle distribution. The direct maximization of LB entropy for an arbitrary initial distribution requires an infinite number of Lagrange multipliers to account for the Casimir invariants. This has restricted studies of Lynden-Bell's violent relaxation theory to only a very small class of initial conditions of a very simple waterbag form, for which the entropy maximization can be performed numerically.
View Article and Find Full Text PDFWe use Kirchhoff's vortex formulation of 2D Euler fluid equations to explore the equilibrium state to which a 2D incompressible fluid relaxes from an arbitrary initial flow. The vortex dynamics obeys Hamilton's equations of motion with x and y coordinates of the vortex position forming a conjugate pair. A state of fluid can, therefore, be expressed in terms of an infinite number of infinitesimal vortices.
View Article and Find Full Text PDF