This study aimed to use temperature-humidity index (THI) as an indicator for assessing heat stress conditions for fertility traits in the Holstein dairy cattle breed in the Netherlands. Data from AI and calving events of 416,814 first-parity cows from the Netherlands were used, considering different THI definitions based on different numbers of days before and after artificial insemination events. To achieve our aim, we investigated first, at population level, the relationship between different THI definitions and 4 fertility traits: conception rate, interval calving to first insemination, interval first to last insemination, and calving interval.
View Article and Find Full Text PDFBackground: Genetic selection improves a population by increasing the frequency of favorable alleles. Understanding and monitoring allele frequency changes is, therefore, important to obtain more insight into the long-term effects of selection. This study aimed to investigate changes in allele frequencies and in results of genome-wide association studies (GWAS), and how those two are related to each other.
View Article and Find Full Text PDFThe purpose of this work was to test the application of selection criteria that consider the genetic variances of future generations. This has not been done previously in numerically large livestock breeding programs based on estimated rather than assumed known marker effects. A generic pure-line pig breeding program was simulated in which 40 males and 400 females were selected every generation.
View Article and Find Full Text PDFMany breeding programmes have to perform preselection, as genotyping and phenotyping all potential breeder candidates is often not a feasible option. There is need to understand how preselection affects the quality of the genomic estimated breeding values (EBVs) at final selection and thereby can affect genetic progress. This simulation study evaluated nine different preselection strategies in a broiler breeder programme and their effect on the quality of the (genomic) EBVs and genetic progress for three different traits: body weight (Body Weight), residual feed intake (RFI) and body weight gain (Gain).
View Article and Find Full Text PDFThe ability to predict the outcome of selection and mating decisions enables breeders to make strategically better selection decisions. To improve genetic progress, those individuals need to be selected whose offspring can be expected to show high genetic variance next to high breeding values. Previously published approaches enable to predict the variance of descendants of 2 future generations for up to 4 founding haplotypes, or 2 outbred individuals, based on phased genotypes, allele effects, and recombination frequencies.
View Article and Find Full Text PDFBackground: Breeding programs are judged by the genetic level of animals that are used to disseminate genetic progress. These animals are typically the best ones of the population. To maximise the genetic level of very good animals in the next generation, parents that are more likely to produce top performing offspring need to be selected.
View Article and Find Full Text PDFOver the past decades, daughter designs, including genotyped sires and their genotyped daughters, have been used as an approach to identify QTL related to economic traits. The aim of this study was to identify genomic regions inherited by Gir sire families and genes associated with number of viable oocytes (VO), total number of oocytes (TO), and number of embryos (EMBR) based on a daughter design approach. In total, 15 Gir sire families were selected.
View Article and Find Full Text PDFFor beef semen usage on dairy cows, much of the research has focused on the performance of the crossbred calves, yet little focus has been given to the subsequent performance of the cow herself. This study aimed to evaluate the performance of dairy cows for milk yield, fertility, and survival traits after giving birth to beef × dairy crossbred calves and compare this with the performance after giving birth to purebred dairy calves. Further, we aimed to study if the effect of a difficult calving was the same regardless of whether the calf was purebred dairy or beef × dairy crossbred.
View Article and Find Full Text PDFBackground: Egg-laying performance is economically important in poultry breeding programs. Crossbreeding between indigenous and elite commercial lines to exploit heterosis has been an upward trend in traditional layer breeding for niche markets. The objective of this study was to analyse the genetic background and to estimate the heterosis of longitudinal egg-laying traits in reciprocal crosses between an indigenous Beijing-You and an elite commercial White Leghorn layer line.
View Article and Find Full Text PDFThe purebred-crossbred genetic correlation (r) is a key parameter to determine whether the optimal selection of purebred animals to improve crossbred performance should rely on crossbred phenotypes, purebred phenotypes, or both. We reviewed published estimates of the r in poultry. In total, 19 studies were included, of which four were on broilers and 15 on laying hens, with 150 r estimates for nine different trait categories.
View Article and Find Full Text PDFGenetic selection has been applied for many generations in animal, plant, and experimental populations. Selection changes the allelic architecture of traits to create genetic gain. It remains unknown whether the changes in allelic architecture are different for the recently introduced technique of genomic selection compared to traditional selection methods and whether they depend on the genetic architectures of traits.
View Article and Find Full Text PDFBackground: International evaluations combine data from different countries allowing breeders to have access to larger panels of elite bulls and to increase the accuracy of estimated breeding values (EBV). However, international and national evaluations can use different sources of information to compute EBV (EBV and EBV, respectively), leading to differences between them. Choosing one of these EBV results in losing the information that is contained only in the discarded EBV.
View Article and Find Full Text PDFBackground: Single-step genomic best linear unbiased prediction (ssGBLUP) models allow the combination of genomic, pedigree, and phenotypic data into a single model, which is computationally challenging for large genotyped populations. In practice, genotypes of animals without their own phenotype and progeny, so-called genotyped selection candidates, can become available after genomic breeding values have been estimated by ssGBLUP. In some breeding programmes, genomic estimated breeding values (GEBV) for these animals should be known shortly after obtaining genotype information but recomputing GEBV using the full ssGBLUP takes too much time.
View Article and Find Full Text PDFTo develop a breed assignment model, three main steps are generally followed: 1) The selection of breed informative single nucleotide polymorphism (SNP); 2) The training of a model, based on a reference population, that allows to classify animals to their breed of origin; and 3) The validation of the developed model on external animals i.e., that were not used in previous steps.
View Article and Find Full Text PDFCurrently, enhancing the collaboration between related breeds is of main importance to increase the competitivity and the sustainability of local breeds. One type of collaboration is the development of an across-breed reference population that will allow a better management of local breeds. For this purpose, the genomic relatedness between the local target breed and possible breeds to be included in the reference population should be estimated.
View Article and Find Full Text PDFBackground: In genomic prediction, it is common to centre the genotypes of single nucleotide polymorphisms based on the allele frequencies in the current population, rather than those in the base generation. The mean breeding value of non-genotyped animals is conditional on the mean performance of genotyped relatives, but can be corrected by fitting the mean performance of genotyped individuals as a fixed regression. The associated covariate vector has been referred to as a 'J-factor', which if fitted as a fixed effect can improve the accuracy and dispersion bias of sire genomic estimated breeding values (GEBV).
View Article and Find Full Text PDFBackground: In broiler breeding, genotype-by-environment interaction is known to result in a genetic correlation between body weight measured in bio-secure and commercial environments that is substantially less than 1. Thus, measuring body weights on sibs of selection candidates in a commercial environment and genotyping them could increase genetic progress. Using real data, the aim of this study was to evaluate which genotyping strategy and which proportion of sibs placed in the commercial environment should be genotyped to optimize a sib-testing breeding program in broilers.
View Article and Find Full Text PDFWith the development of genotyping and sequencing technology, researchers working in the area of conservation genetics are able to obtain the genotypes or even the sequences of a representative sample of individuals from the population. It is of great importance to examine the genomic variants and genes that are highly preferred or pruned during the process of adaptive introgression or long-term hybridization. To the best of our knowledge, we are the first to develop a platform with computational integration of a relative identity-by-descent (rIBD) scores algorithm for introgressive mapping.
View Article and Find Full Text PDFWe have previously shown that single-step genomic best linear unbiased prediction (ssGBLUP) estimates breeding values of genomically preselected animals without preselection bias for widely recorded traits, that is traits recorded for the majority of animals in the breeding population. This study investigated the impact of genomic preselection (GPS) on accuracy and bias in ssGBLUP evaluation of genomically preselected animals for a scarcely recorded trait, that is a trait recorded for only a small proportion of the animals, which generally has a lower prediction accuracy than widely recorded traits, mainly due to having a much smaller number of phenotypes available. We used data from a commercial pig breeding program, considering feed intake as a scarcely recorded target trait, being available for ~30% of the animals with phenotypes for any trait, and average daily gain, backfat thickness and loin depth as widely recorded predictor traits, being available for >95% of the animals with phenotypes for any trait.
View Article and Find Full Text PDFRecent developments allowed generating multiple high-quality 'omics' data that could increase the predictive performance of genomic prediction for phenotypes and genetic merit in animals and plants. Here, we have assessed the performance of parametric and nonparametric models that leverage transcriptomics in genomic prediction for 13 complex traits recorded in 478 animals from an outbred mouse population. Parametric models were implemented using the best linear unbiased prediction, while nonparametric models were implemented using the gradient boosting machine algorithm.
View Article and Find Full Text PDFBackground: Compared to national evaluations, international collaboration projects further improve accuracies of estimated breeding values (EBV) by building larger reference populations or performing a joint evaluation using data (or proxy of them) from different countries. Genomic selection is increasingly adopted in beef cattle, but, to date, the benefits of including genomic information in international evaluations have not been explored. Our objective was to develop an international beef cattle single-step genomic evaluation and investigate its impact on the accuracy and bias of genomic evaluations compared to current pedigree-based evaluations.
View Article and Find Full Text PDFBackground: Empirically assessing the impact of preselection on genetic evaluation of preselected animals requires comparing scenarios that take different approaches into account, including scenarios without preselection. However, preselection is almost always performed in animal breeding programs, so it is difficult to have a dataset without preselection. Hence, most studies on preselection have used simulated datasets, and have concluded that genomic estimated breeding values (GEBV) from subsequent single-step genomic best linear unbiased prediction (ssGBLUP) evaluations are unbiased.
View Article and Find Full Text PDF