Diamond, as the densest allotrope of carbon, displays a range of exemplary material properties that are attractive from a device perspective. Despite diamond displaying high carbon-carbon bond strength, ultrashort (femtosecond) pulse laser radiation can provide sufficient energy for highly localized internal breakdown of the diamond lattice. The less-dense carbon structures generated on lattice breakdown are subject to significant pressure from the surrounding diamond matrix, leading to highly unusual formation conditions.
View Article and Find Full Text PDFThree-dimensional (3D) graphene architectures are of great interest as applications in flexible electronics and biointerfaces. In this study, we demonstrate the facile formation of predetermined 3D polymeric microstructures simply by transferring monolayer graphene. The graphene adheres to the surface of polymeric films via noncovalent π-π stacking bonding and induces a sloped internal strain, leading to the self-rolling of 3D microscale architectures.
View Article and Find Full Text PDFMulti-layered thin films with heterogeneous mechanical properties can be spontaneously transformed to realise various three-dimensional (3D) geometries. Here, we describe micro-patterned all-polymer films called micro-rolls that we use for encapsulating, manipulating, and observing adherent cells in vitro. The micro-rolls are formed of twin-layered films consisting of two polymers with different levels of mechanical stiffness; therefore they can be fabricated by using the strain engineering and a self-folding rolling process.
View Article and Find Full Text PDF