Publications by authors named "Calum Forteath"

Objective: Unexplained changes in regulation of branched chain amino acids (BCAA) during diabetes therapy with metformin have been known for years. Here we have investigated mechanisms underlying this effect.

Methods: We used cellular approaches, including single gene/protein measurements, as well as systems-level proteomics.

View Article and Find Full Text PDF

Inflammation promotes endothelial dysfunction, but the underlying mechanisms remain poorly defined in vivo. Using translational vascular function testing in myocardial infarction patients, a situation where inflammation is prevalent, and knock-out (KO) mouse models we demonstrate a role for mitogen-activated-protein-kinases (MAPKs) in endothelial dysfunction. Myocardial infarction significantly lowers mitogen and stress kinase 1/2 (MSK1/2) expression in peripheral blood mononuclear cells and diminished endothelial function.

View Article and Find Full Text PDF

Many guanide-containing drugs are antihyperglycaemic but most exhibit toxicity, to the extent that only the biguanide metformin has enjoyed sustained clinical use. Here, we have isolated unique mitochondrial redox control properties of metformin that are likely to account for this difference. In primary hepatocytes and H4IIE hepatoma cells we found that antihyperglycaemic diguanides DG5-DG10 and the biguanide phenformin were up to 1000-fold more potent than metformin on cell signalling responses, gluconeogenic promoter expression and hepatocyte glucose production.

View Article and Find Full Text PDF

Rationale: The diabetes mellitus drug metformin is under investigation in cardiovascular disease, but the molecular mechanisms underlying possible benefits are poorly understood.

Objective: Here, we have studied anti-inflammatory effects of the drug and their relationship to antihyperglycemic properties.

Methods And Results: In primary hepatocytes from healthy animals, metformin and the IKKβ (inhibitor of kappa B kinase) inhibitor BI605906 both inhibited tumor necrosis factor-α-dependent IκB degradation and expression of proinflammatory mediators interleukin-6, interleukin-1β, and CXCL1/2 (C-X-C motif ligand 1/2).

View Article and Find Full Text PDF

Anti-hyperglycaemic effects of the hydroxybenzoic acid salicylate might stem from effects of the drug on mitochondrial uncoupling, activation of AMP-activated protein kinase, and inhibition of NF-κB signalling. Here, we have gauged the contribution of these effects to control of hepatocyte glucose production, comparing salicylate with inactive hydroxybenzoic acid analogues of the drug. In rat H4IIE hepatoma cells, salicylate was the only drug tested that activated AMPK.

View Article and Find Full Text PDF