Cisplatin-induced acute kidney injury is a serious problem in cancer patients during treatment of solid tumors. Currently, there are no therapies available to treat or prevent cisplatin nephrotoxicity. Since histone deacetylase (HDAC) inhibition augments cisplatin anti-tumor activity, we tested whether HDAC inhibitors can prevent cisplatin-induced nephrotoxicity and determined the underlying mechanism.
View Article and Find Full Text PDFDiabetes is the leading cause of kidney failure, accounting for >45% of new cases of dialysis. Diabetic nephropathy is characterized by inflammation, fibrosis, and oxidant stress, pathologic features that are shared by many other chronic inflammatory diseases. The cytokine IL-17A was initially implicated as a mediator of chronic inflammatory diseases, but recent studies dispute these findings and suggest that IL-17A can favorably modulate inflammation.
View Article and Find Full Text PDFAm J Physiol Renal Physiol
September 2015
Despite greater understanding of acute kidney injury (AKI) in animal models, many of the preclinical studies are not translatable. Most of the data were derived from a bilateral renal pedicle clamping model with warm ischemia. However, ischemic injury of the kidney in humans is distinctly different and does not involve clamping of renal vessel.
View Article and Find Full Text PDFCisplatin is a highly effective chemotherapeutic drug used to treat a wide variety of solid tumors. However, its use was limited due its dose-limiting toxicity to the kidney. Currently, there are no therapies available to treat or prevent cisplatin nephrotoxicity.
View Article and Find Full Text PDFBackground: Guidance cue netrin-1 was shown to have protective effects in diabetic nephropathy. However, the role of its receptor UNC5B in diabetic kidney disease is unknown. Moreover, whether netrin-1 is protective against diabetic kidney disease in a genetic model of nephropathy and in the nephropathy prone DBA background is also unknown.
View Article and Find Full Text PDFAims: Cardiac injury is accompanied by dynamic changes in the expression of microRNAs (miRs). For example, miR-150 is down-regulated in patients with acute myocardial infarction, atrial fibrillation, dilated and ischaemic cardiomyopathy as well as in various mouse heart failure (HF) models. Circulating miR-150 has been recently proposed as a better biomarker of HF than traditional clinical markers such as brain natriuretic peptide.
View Article and Find Full Text PDFAcute kidney injury (AKI) is a serious complication after liver transplantation. Currently there are no validated biomarkers available for early diagnosis of AKI. The current study was carried out to determine the usefulness of the recently identified biomarkers netrin-1 and semaphorin 3A in predicting AKI in liver transplant patients.
View Article and Find Full Text PDFSemaphorin 3A (sema3A) was recently identified as an early diagnostic biomarker of acute kidney injury. However, its role as a biomarker and/or mediator of chronic kidney disease (CKD) related to diabetic nephropathy is unknown. We examined the expression of sema3A in diabetic animal models and in humans and tested whether sema3A plays a pathogenic role in the development of diabetic nephropathy.
View Article and Find Full Text PDFAcute kidney injury (AKI) is a common problem in the hospital setting and intensive care unit. Despite improved understanding, there are no effective therapies available to treat AKI. A large body of evidence strongly suggests that ischemia reperfusion injury is an inflammatory disease mediated by both adaptive and innate immune systems.
View Article and Find Full Text PDFRecent studies show that guidance molecules that are known to regulate cell migration during development may also play an important role in adult pathophysiologic states. One such molecule, semaphorin3A (sema3A), is highly expressed after acute kidney injury (AKI) in mice and humans, but its pathophysiological role is unknown. Genetic inactivation of sema3A protected mice from ischemia-reperfusion-induced AKI, improved tissue histology, reduced neutrophil infiltration, prevented epithelial cell apoptosis, and increased cytokine and chemokine excretion in urine.
View Article and Find Full Text PDFBackground: Semaphorins are guidance proteins implicated in several processes such as angiogenesis, organogenesis, cell migration, and cytokine release. Experimental studies showed that semaphorin-3a (SEMA3A) administration induces transient massive proteinuria, podocyte foot process effacement and endothelial cell damage in healthy animals. While SEMA3A signaling has been demonstrated to be mechanistically involved in experimental diabetic glomerulopathy and in acute kidney injury, to date its role in human chronic kidney disease (CKD) has not been investigated.
View Article and Find Full Text PDFThe netrin-1 administration or overexpression is known to protect colon from acute colitis. However, the receptor that mediates netrin-1 protective activities in the colon during colitis remains unknown. We tested the hypothesis that UNC5B receptor is a critical mediator of protective function of netrin-1 in dextran sodium sulfate (DSS)-induced colitis using mice with partial deletion of UNC5B receptor.
View Article and Find Full Text PDFBackground: Netrin-1 was recently identified as an early diagnostic biomarker of chronic kidney disease (CKD) in an experimental animal model. However, its usefulness for early diagnosis of CKD in humans is unknown. The current study evaluated whether netrin-1 is increased in urine from human diabetic patients.
View Article and Find Full Text PDFBackgrounds: Predicting the development of acute kidney injury (AKI) in the critical care setting is challenging. Although several biomarkers showed somewhat satisfactory performance for detecting established AKI even in a heterogeneous disease-oriented population, identification of new biomarkers that predict the development of AKI accurately is urgently required.
Methods: A single-center prospective observational cohort study was undertaken to evaluate for the first time the reliability of the newly identified biomarker semaphorin 3A for AKI diagnosis in heterogeneous intensive care unit populations.
Netrin-1 regulates cell survival and apoptosis by activation of its receptors, including UNC5B. However, the in vivo role of UNC5B in cell survival during cellular stress and tissue injury is unknown. We investigated the role of UNC5B in cell survival in response to stress using mice heterozygously expressing the UNC5B gene (UNC5B(-/flox)) and mice with targeted homozygous deletion of UNC5B in kidney epithelial cells (UNC5B(-/flox/GGT-cre)).
View Article and Find Full Text PDFBackground: Netrin-1 was recently identified as an early diagnostic biomarker of acute kidney injury. However, its usefulness for early diagnosis of chronic kidney disease (CKD) is unknown. The current study evaluated whether these proteins are increased in urine from experimental animals with diabetes.
View Article and Find Full Text PDFOrgan cross talk exists in many diseases of the human and animal models of human diseases. A recent study demonstrated that inflammatory mediators can cause acute kidney injury and neutrophil infiltration in a mouse model of dextran sodium sulfate (DSS)-colitis. However, the chemokines and their receptors that may mediate distant organ effects in colitis are unknown.
View Article and Find Full Text PDFDiabetic nephropathy is currently the most common cause of end-stage renal disease in the western world. Exacerbated inflammation of the kidney is known to contribute acceleration of nephropathy. Despite increased COX-2-mediated production of prostanoid metabolite PGE2, knowledge on its involvement in the progression of diabetic kidney disease is not complete.
View Article and Find Full Text PDFBackground: Semaphorin 3A is a secreted protein that regulates cell motility and attachment in axon guidance, vascular growth, immune cell regulation and tumor progression. However, nothing is known about its role in kidney pathophysiology. Here, we determined whether semaphorin3A is induced after acute kidney injury (AKI) and whether urinary semaphorin 3A can predict AKI in humans undergoing cardiopulmonary bypass (CPB).
View Article and Find Full Text PDFNetrin-1 regulates inflammation but the mechanism by which this occurs is unknown. Here we explore the role of netrin-1 in regulating the production of the prostanoid metabolite PGE2 from neutrophils in in vitro and in vivo disease models. Ischemia reperfusion in wild-type and RAG-1 knockout mice induced severe kidney injury that was associated with a large increase in neutrophil infiltration and COX-2 expression in the infiltrating leukocytes.
View Article and Find Full Text PDFOrgan cross talk is increasingly appreciated in human disease, and inflammatory mediators are shown to mediate distant organ injury in many disease models. Colitis and intestinal injury are known to be mediated by infiltrating immune cells and their secreted cytokines. However, its effect on other organs, such as the kidney, has never been studied.
View Article and Find Full Text PDFAcute kidney injury-induced organ fibrosis is recognized as a major risk factor for the development of chronic kidney disease, which remains one of the leading causes of death in the developed world. However, knowledge on molecules that may suppress the fibrogenic response after injury is lacking. In ischemic models of acute kidney injury, we demonstrate a new function of netrin-1 in regulating interstitial fibrosis.
View Article and Find Full Text PDFImproper macrophage activation is pathogenically linked to various metabolic, inflammatory, and immune disorders. Therefore, regulatory proteins controlling macrophage activation have emerged as important new therapeutic targets. We recently demonstrated that netrin-1 regulates inflammation and infiltration of monocytes and ameliorates ischemia-reperfusion-induced kidney injury.
View Article and Find Full Text PDFInflammation plays a key role in the development and progression of diabetic kidney disease; however, the role of the anti-inflammatory molecule netrin-1 in diabetic kidney disease is unknown. We examined the role of netrin-1 in diabetes-induced kidney inflammation and injury using tubule-specific netrin-1 transgenic mice. Diabetes was induced using streptozotocin in wild-type and netrin-1 transgenic animals.
View Article and Find Full Text PDFBackground: Netrin-1 is a laminin-related secreted protein, is highly induced after tissue injury, and may serve as a marker of injury. However, the regulation of netrin-1 production is not unknown. Current study was carried out in mouse and mouse kidney cell line (TKPTS) to determine the signaling pathways that regulate netrin-1 production in response to injury.
View Article and Find Full Text PDF