Background & Aims: Barrett's esophagus is considered to be a metaplastic lesion that predisposes for esophageal adenocarcinoma. Development of Barrett's esophagus is considered to be driven by sonic hedgehog mediated bone morphogenetic protein (BMP) signaling. We aimed to investigate in preclinical in vivo models whether targeting canonical BMP signaling could be an effective treatment for Barrett's esophagus.
View Article and Find Full Text PDFEsophageal adenocarcinoma (EAC) is a highly aggressive cancer and its response to chemo- and radiotherapy is unpredictable. EACs are highly heterogeneous at the molecular level. The aim of this study was to perform gene expression analysis of EACs to identify distinct molecular subgroups and to investigate expression signatures in relation to treatment response.
View Article and Find Full Text PDFPatients with epithelial metaplasias have an increased risk of developing malignancies. In Barrett's esophagus, neo-columnar epithelium develops proximal to the squamous-columnar junction (SCJ) in the esophagus as the result of prolonged exposure to bile and acid reflux. Patients require lifetime periodic surveillance, due to lack of effective eradication therapies.
View Article and Find Full Text PDFBarrett's esophagus (BE) predisposes for the malignant condition of esophageal adenocarcinoma (EAC). Since BE patients have few or no symptoms, most of these patients are not identified and not included in surveillance programs. These BE patients are at risk of developing advanced-stage EAC.
View Article and Find Full Text PDFObjective: To investigate the effect of smokeless tobacco (ST), cigar and/or pipe smoking (CP) on the development of Barrett esophagus (BE) in white male patients with gastroesophageal reflux disease (GERD).
Patients And Methods: A total of 1015 records of white male adults with BE (cases; n=508) or GERD (controls, n=507) were reviewed for lifestyle factors. Logistic regression analyses were performed after adjusting for lifestyle factors to assess the effects of ST and CP on the risk of developing BE.
Background & Aims: Immune checkpoint inhibition may affect growth or progression of highly aggressive cancers, such as esophageal adenocarcinoma (EAC). We investigated the regulation of expression of major histocompatibility complex, class 1 (MHC-I) proteins (encoded by HLA-A, HLA-B, and HLA-C) and the immune response to EACs in patient samples.
Methods: We performed quantitative polymerase chain reaction array analyses of OE33 cells and OE19 cells, which express different levels of the ATP binding cassette subfamily B member 1 (TAP1) and TAP2, required for antigen presentation by MHC-I, to identify microRNAs (miRNAs) that regulate their expression.
Surveillance of Barrett's oesophagus allows us to study the evolutionary dynamics of a human neoplasm over time. Here we use multicolour fluorescence in situ hybridization on brush cytology specimens, from two time points with a median interval of 37 months in 195 non-dysplastic Barrett's patients, and a third time point in a subset of 90 patients at a median interval of 36 months, to study clonal evolution at single-cell resolution. Baseline genetic diversity predicts progression and remains in a stable dynamic equilibrium over time.
View Article and Find Full Text PDFBackground. Primary sclerosing cholangitis (PSC) is a chronic inflammatory liver disease and is strongly associated with cholangiocarcinoma (CCA). The lack of efficient diagnostic methods for CCA is a major problem.
View Article and Find Full Text PDFDue to improved understanding of the role of bone morphogenetic protein 4 (BMP4) in an increasing number of diseases, the development of selective inhibitors of BMP4 is an attractive therapeutic option. The currently available BMP4 inhibitors are not suitable as therapeutics because of their low specificity and low effectiveness. Here, we compared newly generated anti-BMP4 llama-derived antibodies (VHHs) with 3 different types of commercially available BMP4 inhibitors, natural antagonists, small molecule BMPR inhibitors and conventional anti-BMP4 monoclonal antibodies.
View Article and Find Full Text PDFBone morphogenetic proteins (BMP) have important but distinct roles in tissue homeostasis and disease, including carcinogenesis and tumor progression. A large number of BMP inhibitors are available to study BMP function; however, as most of these antagonists are promiscuous, evaluating specific effects of individual BMPs is not feasible. Because the oncogenic role of the different BMPs varies for each neoplasm, highly selective BMP inhibitors are required.
View Article and Find Full Text PDFObjective: The risk of developing adenocarcinoma in non-dysplastic Barrett's oesophagus is low and difficult to predict. Accurate tools for risk stratification are needed to increase the efficiency of surveillance. We aimed to develop a prediction model for progression using clinical variables and genetic markers.
View Article and Find Full Text PDFBarrett's esophagus (BE) goes through a sequence of low grade dysplasia (LGD) and high grade dysplasia (HGD) to esophageal adenocarcinoma (EAC). The current gold standard for BE outcome prediction, histopathological staging, can be unreliable. TP53 abnormalities may serve as prognostic biomarkers.
View Article and Find Full Text PDFThe following, from the 12th OESO World Conference: Cancers of the Esophagus, includes commentaries on signaling pathways that can be targeted with immunotherapy; the role of micro-RNAs in the immune response to esophageal cancer; and the association between obesity, the immune system, and esophageal adenocarcinoma.
View Article and Find Full Text PDFIn Western countries the incidence of the esophageal adenocarcinoma (EAC) has risen at a more rapid rate than that of any other malignancy. Despite intensive therapies this cancer is associated with extreme high morbidity and mortality. For this reason, novel effective therapeutic strategies are urgently required.
View Article and Find Full Text PDFTo design successful vaccines for chronic diseases, an understanding of memory CD8(+) T cell responses to persistent antigen restimulation is critical. However, most studies comparing memory and naive cell responses have been performed only in rapidly cleared acute infections. Herein, by comparing the responses of memory and naive CD8(+) T cells to acute and chronic lymphocytic choriomeningitis virus infection, we show that memory cells dominated over naive cells and were protective when present in sufficient numbers to quickly reduce infection.
View Article and Find Full Text PDFSeveral genes within a syntenic region of human and mouse chromosome 1 are associated with predisposition to systemic lupus erythematosus. Analyses of lupus-prone congenic mice have pointed to an important role for the signaling lymphocyte activation molecule family (slamf)6 surface receptor in lupus pathogenesis. In this article, we demonstrate that a second member of the Slamf gene family, Slamf4 (Cd244), contributes to lupus-related autoimmunity.
View Article and Find Full Text PDFStudies of human systemic lupus erythematosus patients and of murine congenic mouse strains associate genes in a DNA segment on chromosome 1 with a genetic predisposition for this disease. The systematic analysis of lupus-prone congenic mouse strains suggests a role for two isoforms of the Ly108 receptor in the pathogenesis of the disease. In this study, we demonstrate that Ly108 is involved in the pathogenesis of lupus-related autoimmunity in mice.
View Article and Find Full Text PDFSeveral genes in an interval of human and mouse chromosome 1 are associated with a predisposition for systemic lupus erythematosus. Congenic mouse strains that contain a 129-derived genomic segment, which is embedded in the B6 genome, develop lupus because of epistatic interactions between the 129-derived and B6 genes, e.g.
View Article and Find Full Text PDFEWS/FLI1-activated transcript 2 (EAT-2)A and EAT-2B are single SH2-domain proteins, which bind to phosphorylated tyrosines of signaling lymphocyte activation molecule family receptors in murine NK cells. While EAT-2 is a positive regulator in human cells, a negative regulatory role was attributed to the adapter in NK cells derived from EAT-2A-deficient 129Sv mice. To evaluate whether the genetic background or the presence of a selection marker in the mutant mice could influence the regulatory mode of these adapters, we generated EAT-2A-, EAT-2B-, and EAT-2A/B-deficient mice using C57BL/6 embryonic stem cells.
View Article and Find Full Text PDFThe nine SLAM-family genes, SLAMF1-9, a subfamily of the immunoglobulin superfamily, encode differentially expressed cell-surface receptors of hematopoietic cells. Engagement with their ligands, which are predominantly homotypic, leads to distinct signal transduction events, for instance those that occur in the T or NK cell immune synapse. Upon phosphorylation of one or more copies of a unique tyrosine-based signaling motif in their cytoplasmic tails, six of the SLAM receptors recruit the highly specific single SH2-domain adapters SLAM-associated protein (SAP), EAT-2A, and/or EAT-2B.
View Article and Find Full Text PDFHuman EAT-2 (SH2D1B) and SLAM-associated protein (SAP) (SH2D1A) are single SH2-domain adapters, which bind to specific tyrosine residues in the cytoplasmic tail of six signaling lymphocytic activation molecule (SLAM) (SLAMF1)-related receptors. Here we report that, unlike in humans, the mouse and rat Eat2 genes are duplicated with an identical genomic organization. The coding regions of the mouse Eat2a and Eat2b genes share 91% identity at the nucleotide level and 84% at the protein level; similarly, segments of introns are highly conserved.
View Article and Find Full Text PDFThe T and natural killer (NK) cell-specific gene SAP (SH2D1A) encodes a 'free SH2 domain' that binds a specific tyrosine motif in the cytoplasmic tail of SLAM (CD150) and related cell surface proteins. Mutations in SH2D1A cause the X-linked lymphoproliferative disease, a primary immunodeficiency. Here we report that a second gene encoding a free SH2 domain, EAT-2, is expressed in macrophages and B lympho cytes.
View Article and Find Full Text PDFX-linked lymphoproliferative (XLP) disease is a primary immunodeficiency caused by a defect in the SH2D1A gene. At least 3 major manifestations characterize its clinical presentation: fatal infectious mononucleosis (FIM), lymphomas, and immunoglobulin deficiencies. Common variable immunodeficiency (CVID) is a syndrome characterized by immunoglobulin deficiency leading to susceptibility to infection.
View Article and Find Full Text PDF