Neuropsychiatric conditions pose substantial challenges for therapeutic development due to their complex and poorly understood underlying mechanisms. High-throughput, unbiased phenotypic assays present a promising path for advancing therapeutic discovery, especially within disease-relevant neural tissues. Here, we introduce NeuroPainting, a novel adaptation of the Cell Painting assay, optimized for high-dimensional morphological phenotyping of neural cell types, including neurons, neuronal progenitor cells, and astrocytes derived from human stem cells.
View Article and Find Full Text PDFWe herein describe a postdoctoral training program designed to train biologists with microscopy experience in bioimage analysis. We detail the rationale behind the program, the various components of the training program, and outcomes in terms of works produced and the career effects on past participants. We analyze the results of an anonymous survey distributed to past and present participants, indicating overall high value of all 12 rated aspects of the program, but significant heterogeneity in which aspects were most important to each participant.
View Article and Find Full Text PDFDeep learning has greatly accelerated research in biological image analysis yet it often requires programming skills and specialized tool installation. Here we present Piximi, a modern, no-programming image analysis tool leveraging deep learning. Implemented as a web application at Piximi.
View Article and Find Full Text PDFWe herein describe a postdoctoral training program designed to train biologists with microscopy experience in bioimage analysis. We detail the rationale behind the program, the various components of the training program, and outcomes in terms of works produced and the career effects on past participants. We analyze the results of an anonymous survey distributed to past and present participants, indicating overall high value of all 12 rated aspects of the program, but significant heterogeneity in which aspects were most important to each participant.
View Article and Find Full Text PDFAdvances in high-throughput microscopy have enabled the rapid acquisition of large numbers of high-content microscopy images. Whether by deep learning or classical algorithms, image analysis pipelines then produce single-cell features. To process these single-cells for downstream applications, we present Pycytominer, a user-friendly, open-source python package that implements the bioinformatics steps, known as "image-based profiling".
View Article and Find Full Text PDFQuantitative microscopy is a powerful method for performing phenotypic screens from which image-based profiling can extract a wealth of information, termed profiles. These profiles can be used to elucidate the changes in cellular phenotypes across cell populations from different patient samples or following genetic or chemical perturbations. One such image-based profiling method is the Cell Painting assay, which provides morphological insight through the imaging of eight cellular compartments.
View Article and Find Full Text PDFCellProfiler is a widely used software for creating reproducible, reusable image analysis workflows without needing to code. In addition to the >90 modules that make up the main CellProfiler program, CellProfiler has a plugins system that allows for the creation of new modules which integrate with other Python tools or tools that are packaged in software containers. The CellProfiler-plugins repository contains a number of these CellProfiler modules, especially modules that are experimental and/or dependency-heavy.
View Article and Find Full Text PDFThe timely removal of ADP-ribosylation is crucial for efficient DNA repair. However, much remains to be discovered about ADP-ribosylhydrolases. Here, we characterize the physiological role of TARG1, an ADP-ribosylhydrolase that removes aspartate/glutamate-linked ADP-ribosylation.
View Article and Find Full Text PDFCellProfiler is a widely used software for creating reproducible, reusable image analysis workflows without needing to code. In addition to the >90 modules that make up the main CellProfiler program, CellProfiler has a plugins system that allows for the creation of new modules which integrate with other Python tools or tools that are packaged in software containers. The CellProfiler-plugins repository contains a number of these CellProfiler modules, especially modules that are experimental and/or dependency-heavy.
View Article and Find Full Text PDFQuantitative microscopy is a powerful method for performing phenotypic screens from which image-based profiling can extract a wealth of information, termed profiles. These profiles can be used to elucidate the changes in cellular phenotypes across cell populations from different patient samples or following genetic or chemical perturbations. One such image-based profiling method is the Cell Painting assay, which provides morphological insight through the imaging of eight cellular compartments.
View Article and Find Full Text PDFADP-ribosylation is an ancient, highly conserved, and reversible covalent modification critical for a variety of endogenous processes in both prokaryotes and eukaryotes. ADP-ribosylation targets proteins, nucleic acids, and small molecules (including antibiotics). ADP-ribosylation signalling involves enzymes that add ADP-ribose to the target molecule, the (ADP-ribosyl)transferases; and those that remove it, the (ADP-ribosyl)hydrolases.
View Article and Find Full Text PDFADP-ribosylation is a modification that targets a variety of macromolecules and regulates a diverse array of important cellular processes. ADP-ribosylation is catalysed by ADP-ribosyltransferases and reversed by ADP-ribosylhydrolases. Recently, an ADP-ribosyltransferase toxin termed 'DarT' from bacteria, which is distantly related to human PARPs, was shown to modify thymidine in single-stranded DNA in a sequence specific manner.
View Article and Find Full Text PDFADP-ribosyltransferases use NAD to catalyse substrate ADP-ribosylation, and thereby regulate cellular pathways or contribute to toxin-mediated pathogenicity of bacteria. Reversible ADP-ribosylation has traditionally been considered a protein-specific modification, but recent in vitro studies have suggested nucleic acids as targets. Here we present evidence that specific, reversible ADP-ribosylation of DNA on thymidine bases occurs in cellulo through the DarT-DarG toxin-antitoxin system, which is found in a variety of bacteria (including global pathogens such as Mycobacterium tuberculosis, enteropathogenic Escherichia coli and Pseudomonas aeruginosa).
View Article and Find Full Text PDF