Background: Pivekimab sunirine (IMGN632) is a first-in-class antibody-drug conjugate comprising a high-affinity CD123 antibody, cleavable linker, and novel indolinobenzodiazepine pseudodimer payload. CD123 is overexpressed in several haematological malignancies, including acute myeloid leukaemia. We present clinical data on pivekimab sunirine in relapsed or refractory acute myeloid leukaemia.
View Article and Find Full Text PDFPurpose: The transmembrane protein CD37 is expressed almost exclusively in lymphoid tissues, with the highest abundance in mature B cells. CD37-directed antibody- and, more recently, cellular-based approaches have shown preclinical and promising early clinical activity. Naratuximab emtansine (Debio 1562, IMGN529) is an antibodydrug conjugate (ADC) that incorporates an anti-CD37 monoclonal antibody conjugated to the maytansinoid DM1 as payload.
View Article and Find Full Text PDFAntibody-drug conjugates (ADC) are a novel way to deliver potent cytotoxic compounds to cells expressing a specific antigen. Four ADC targeting CD19, including SAR3419 (coltuximab ravtansine), have entered clinical development. Here, we present huB4-DGN462, a novel ADC based on the SAR3419 anti-CD19 antibody linked sulfo-SPDB to the potent DNA-alkylating agent DGN462.
View Article and Find Full Text PDFThe myeloid differentiation antigen CD33 has long been exploited as a target for antibody-based therapeutic approaches in acute myeloid leukemia (AML). Validation of this strategy was provided with the approval of the CD33-targeting antibody-drug conjugate (ADC) gemtuzumab ozogamicin in 2000; the clinical utility of this agent, however, has been hampered by safety concerns. Thus, the full potential of CD33-directed therapy in AML remains to be realized, and considerable interest exists in the design and development of more effective ADCs that confer high therapeutic indices and favorable tolerability profiles.
View Article and Find Full Text PDFNaratuximab emtansine (IMGN529) is an investigational antibody-drug conjugate consisting of a CD37-targeting antibody conjugated to the maytansine-derived microtuble disruptor, DM1. IMGN529 has shown promising preclinical and clinical activity in non-Hodgkin lymphoma, including diffuse large B-cell lymphoma (DLBCL). Due to the aggressive nature of the disease, DLBCL is often treated with combination therapies to maximize clinical outcomes; therefore, we investigated the potential of combining IMGN529 with both standard-of-care and emerging therapies against multiple oncology-relevant targets and pathways.
View Article and Find Full Text PDFAlthough EGFR is a validated therapeutic target across multiple cancer indications, the often modest clinical responses to current anti-EGFR agents suggest the need for improved therapeutics. Here, we demonstrate that signal amplification driven by high-affinity EGFR ligands limits the capacity of monoclonal anti-EGFR antibodies to block pathway signaling and cell proliferation and that these ligands are commonly coexpressed with low-affinity EGFR ligands in epithelial tumors. To develop an improved antibody therapeutic capable of overcoming high-affinity ligand-mediated signal amplification, we used a network biology approach comprised of signaling studies and computational modeling of receptor-antagonist interactions.
View Article and Find Full Text PDFIn this study we generated a novel dual specific phosphatase 4 (DUSP4) deletion mouse using a targeted deletion strategy in order to examine the role of MAP kinase phosphatase-2 (MKP-2) in immune responses. Lipopolysaccharide (LPS) induced a rapid, time and concentration-dependent increase in MKP-2 protein expression in bone marrow-derived macrophages from MKP-2(+/+) but not from MKP-2(-/-) mice. LPS-induced JNK and p38 MAP kinase phosphorylation was significantly increased and prolonged in MKP-2(-/-) macrophages whilst ERK phosphorylation was unaffected.
View Article and Find Full Text PDFTargeted therapy against the BRAF/mitogen-activated protein kinase (MAPK) pathway is a promising new therapeutic approach for the treatment of melanoma. Treatment with selective BRAF inhibitors results in a high initial response rate but limited duration of response. To counter this, investigators propose combining this therapy with other targeted agents, addressing the issue of redundancy and signaling through different oncogenic pathways.
View Article and Find Full Text PDFMAP kinase phosphatase-2 (MKP-2) is a member of the family of dual specificity phosphatases that functions to inactivate the ERK and JNK MAP kinase signalling pathways. Here, we identify a novel human MKP-2 variant (MKP-2-S) lacking the MAP kinase binding site but retaining the phosphatase catalytic domain. Endogenous MKP-2-S transcripts and proteins were found in PC3 prostate and MDA-MB-231 breast cancer cells and also human prostate biopsies.
View Article and Find Full Text PDFPurpose: In the current study, we investigate the activation of antiapoptotic signaling pathways in response to proteasome inhibitor treatment in pancreatic cancer and evaluate the use of concomitant inhibition of these pathways to augment proteasome inhibitor treatment responses.
Experimental Design: Pancreatic cancer cell lines and mouse flank xenografts were treated with proteasome inhibitor alone or in combination with chemotherapeutic compounds (gemcitabine, erlotinib, and bevacizumab), induction of apoptosis and effects on tumor growth were assessed. The effect of bortezomib (a first-generation proteasome inhibitor) and NPI-0052 (a second-generation proteasome inhibitor) treatment on key pancreatic mitogenic and antiapoptotic pathways [epidermal growth factor receptor, extracellular signal-regulated kinase, and phosphoinositide-3-kinase (PI3K)/AKT] was determined and the ability of inhibitors of these pathways to enhance the effects of proteasome inhibition was assessed in vitro and in vivo.
The mechanisms underpinning the coupling of GPCRs, such as PAR-2, to the phosphorylation of p65 NFkappaB have not been investigated. In the current study we found that trypsin and the selective PAR-2 activating peptide, 2f-LIGKV-OH, stimulated large and sustained increases in the serine 536 phosphorylation of p65/RelA in a transfected skin epithelial cell line and primary keratinocytes. Parallel experiments showed that in both cell types, p65 NFkappaB phosphorylation is mediated through the selective activation of IKK2.
View Article and Find Full Text PDFHeparin-binding epidermal growth factor-like growth factor (HB-EGF) is a member of the EGF growth factor family. Initially synthesized as a membrane-bound precursor (pro-HB-EGF), it is cleaved at the juxtamembrane domain to release the soluble form of HB-EGF (s-HB-EGF) by sheddases, including matrix metalloproteinases (MMP) and a disintegrin and metalloproteinases. This is a process referred to as ectodomain shedding and is implicated in the process of all ligands of the EGF receptor (EGFR) family.
View Article and Find Full Text PDFMAP Kinase Phosphatase-2 (MKP-2) is a dual specific nuclear phosphatase which is selective for both ERK and JNK, MAP kinases implicated in the regulation of apoptosis in response to genotoxic stress. Here we report the conditional expression of MKP-2 in human embryonic kidney cells 293. We demonstrate that Flag-WT-MKP-2 is able to rescue cells from apoptotic commitment when subjected to UV-C or cisplatin treatment.
View Article and Find Full Text PDF1 In this study, we examined the role of Ca2+ in linking proteinase-activated receptor-2 (PAR2) to the nuclear factor kappa B (NFkappaB) pathway in a skin epithelial cell line NCTC2544 stably expressing PAR2 (clone G). 2 In clone G, PAR2-mediated NFkappaB luciferase reporter activity and NFkappaB DNA-binding activity was reduced by preincubation with BAPTA-AM but not BAPTA. Trypsin stimulation of inhibitory kappa B kinases, IKKalpha and IKKbeta, was also inhibited following pretreatment with BAPTA-AM.
View Article and Find Full Text PDFMAP kinase phosphatase-2 (MKP-2) is a member of a family of dual specificity phosphatases (DSPs) that function in both the cytosol and nucleus to inactivate the MAP kinases. The mechanism that controls the subcellular distribution of these proteins is currently unclear. In this study, we have used site-directed mutagenesis to remove two novel nuclear localization sequences, NLS-1 and -2, either alone or in combination (DNLS).
View Article and Find Full Text PDF