Larval Lepidoptera gain survival advantages by aggregating, especially when combined with aposematic warning signals, yet reductions in predation risk may not be experienced equally across all group members. Hamilton's selfish herd theory predicts that larvae that surround themselves with their group mates should be at lower risk of predation, and those on the periphery of aggregations experience the greatest risk, yet this has rarely been tested. Here, we expose aggregations of artificial 'caterpillar' targets to predation from free-flying, wild birds to test for marginal predation when all prey are equally accessible and for an interaction between warning coloration and marginal predation.
View Article and Find Full Text PDFInsect herbivores, such as lepidopteran larvae, often have close evolutionary relationships with their host plants, with which they may be locked in an evolutionary arms race. Larval grouping behaviour may be one behavioural adaptation that improves host plant feeding, but aggregation also comes with costs, such as higher competition and limited resource access. Here, we use the Heliconiini butterfly tribe to explore the impact of host plant traits on the evolution of larval gregariousness.
View Article and Find Full Text PDFAbstractMany species gain antipredator benefits by combining gregarious behavior with warning coloration, yet there is debate over which trait evolves first and which is the secondary adaptive enhancement. Body size can also influence how predators receive aposematic signals and potentially constrain the evolution of gregarious behavior. To our knowledge, the causative links between the evolution of gregariousness, aposematism, and larger body sizes have not been fully resolved.
View Article and Find Full Text PDFPrey seldom rely on a single type of antipredator defence, often using multiple defences to avoid predation. In many cases, selection in different contexts may favour the evolution of multiple defences in a prey. However, a prey may use multiple defences to protect itself during a single predator encounter.
View Article and Find Full Text PDFPrey animals typically try to avoid being detected and/or advertise to would-be predators that they should be avoided. Both anti-predator strategies primarily rely on colour to succeed, but the specific patterning used is also important. While the role of patterning in camouflage is relatively clear, the design features of aposematic patterns are less well understood.
View Article and Find Full Text PDFPhilos Trans R Soc Lond B Biol Sci
April 2023
To evolve, and remain adaptive, collective behaviours must have a positive impact on overall individual fitness. However, these adaptive benefits may not be immediately apparent owing to an array of interactions with other ecological traits, which can depend on a lineage's evolutionary past and the mechanisms controlling group behaviour. A coherent understanding of how these behaviours evolve, are exhibited, and are coordinated across individuals, therefore requires an integrative approach spanning traditional disciplines in behavioural biology.
View Article and Find Full Text PDFThe conspicuous warning signal of aposematic animals is learned by their predators, and the resulting avoidance benefits both parties. Given evidence that birds can distinguish the profitability of prey from the environmental context in which they appear, aposematic insects' host plants might also provide an important cue to foraging predators. The aposematic cinnabar moth (Tyria jacobaeae) larva is a specialist on its ragwort (Senecio spp.
View Article and Find Full Text PDF