Military-civilian partnerships have built the foundation for US neurosurgery as we see it today. Each conflict throughout history has led to expansion within the field of neurosurgery, benefiting civilian patients and those in uniform. Despite the field's growth during wartime, military neurosurgical case volume declines during peacetime, and as a result, important knowledge gained is at risk of being lost.
View Article and Find Full Text PDFHow do we think about time? Converging lesion and neuroimaging evidence indicates that orbitofrontal cortex (OFC) supports the encoding and retrieval of temporal context in long-term memory, which may contribute to confabulation in individuals with OFC damage. Here, we reveal that OFC damage diminishes working memory for temporal order, that is, the ability to disentangle the relative recency of events as they unfold. OFC lesions reduced working memory for temporal order but not spatial position, and individual deficits were commensurate with lesion size.
View Article and Find Full Text PDFBackground: Vestibular compensatory eye movements provide visual fixation stabilization during head movement. The anatomic pathways mediating a normal horizontal vestibulo-ocular reflex (h-VOR), when lesioned, cause spontaneous nystagmus. While previous reports address the effect of convergence on different spontaneous nystagmus types, to our knowledge, a study of acute vestibular nystagmus suppression viewing near targets comparing patients with peripheral or central vestibular lesions has not been previously reported.
View Article and Find Full Text PDFDecision making often requires making arbitrary choices ("picking") between alternatives that make no difference to the agent, that are equally desirable, or when the potential reward is unknown. Using event-related potentials we tested the effect of age on this common type of decision making. We compared two age groups: ages 18-25, and ages 41-67 on a masked-priming paradigm while recording EEG and EMG.
View Article and Find Full Text PDFThe ability to represent and select information in working memory provides the neurobiological infrastructure for human cognition. For 80 years, dominant views of working memory have focused on the key role of prefrontal cortex (PFC) [1-8]. However, more recent work has implicated posterior cortical regions [9-12], suggesting that PFC engagement during working memory is dependent on the degree of executive demand.
View Article and Find Full Text PDF