Publications by authors named "Callow J"

Many ecosystems are well adapted to fire, although the impacts of fire seasonality and its effect on post-fire recruitment are less well understood. Late summer or autumn fires within eucalypt forests with a Mediterranean-type climate allow for seedling emergence during the cooler and wetter seasons. The emergence and survival after spring fires may be impacted by higher soil temperatures and water stress, delaying recruitment until the subsequent winter period.

View Article and Find Full Text PDF

Plant phenology describes the timing of reproductive events including flowering and fruiting, which for many species are affected by fire disturbance. Understanding phenological responses to fire provides insights into how forest demographics and resources may shift alongside increasing fire frequency and intensity driven by climate change. However, isolating the direct effects of fire on a species' phenology and excluding potential confounders (e.

View Article and Find Full Text PDF

Objectives: The free Achilles tendon is defined as the region of tendon distal to the soleus which is "unbuttressed," i.e., unsupported by muscular tissue.

View Article and Find Full Text PDF

Ocean-atmosphere climatic interactions, such as those resulting from El Niño Southern Oscillation (ENSO) are known to influence sea level, sea surface temperature, air temperature, and rainfall in the western Pacific region, through to the north-west Australian Ningaloo coast. Mangroves are ecologically important refuges for biodiversity and a rich store of blue carbon. Locations such as the study site (Mangrove Bay, a World Heritage Site within Ningaloo Marine Park and Cape Range National Park) are at the aridity range-limit which means trees are small in stature, forests small in area, and are potentially susceptible to climate variability such as ENSO that brings lower sea level and higher temperature.

View Article and Find Full Text PDF

Conventional methods of uniformly spraying fields to combat weeds, requires large herbicide inputs at significant cost with impacts on the environment. More focused weed control methods such as site-specific weed management (SSWM) have become popular but require methods to identify weed locations. Advances in technology allows the potential for automated methods such as drone, but also ground-based sensors for detecting and mapping weeds.

View Article and Find Full Text PDF

Understanding past climate variability is critical to informing debate of likely impacts of global warming on weather and climate, and water resources. Here we present a near annual resolution reconstruction of climate developed from a speleothem that spans the Eemian [Marine Isotope Stage 5e (MIS 5e)] from 117,500 to 123,500 years BP-the most recent period in the Earth's history when temperatures were similar to those of today. Using  Mg, Sr, and Ba as proxies, we show the first indication of solar and teleconnection cyclic forcing of Eemian climate in southeast Australia, a region at present often affected by severe drought and bushfires.

View Article and Find Full Text PDF

Annual resolution reconstructions of alpine temperatures are rare, particularly for the Southern Hemisphere, while no snow cover reconstructions exist. These records are essential to place in context the impact of anthropogenic global warming against historical major natural climate events such as the Roman Warm Period (RWP), Medieval Climate Anomaly (MCA) and Little Ice Age (LIA). Here we show for a marginal alpine region of Australia using a carbon isotope speleothem reconstruction, warming over the past five decades has experienced equivalent magnitude of temperature change and snow cover decline to the RWP and MCA.

View Article and Find Full Text PDF

Surface topography plays a key role in the colonization of substrata by the colonizing stages of marine fouling organisms. For the innovation of marine antifouling coatings, it is essential to understand how topographic cues affect the settlement of these organisms. In this study, tapered, spiked microstructures and discrete honeycombs of varying feature dimensions were designed and fabricated in order to examine the influence of topography on the attachment of zoospores of the green macroalga Ulva linza and cells of the diatom (microalga) Navicula incerta.

View Article and Find Full Text PDF

A set of controlled surface composition films was produced utilizing amphiphilic block copolymers dispersed in a cross-linked poly(dimethylsiloxane) network. These block copolymers contained oligo(ethylene glycol) (PEGMA) and fluoroalkyl (AF6) side chains in selected ratios and molecular weights to control surface chemistry including antifouling and fouling-release performance. Such properties were assessed by carrying out assays using two algae, the green macroalga Ulva linza (favors attachment to polar surfaces) and the unicellular diatom Navicula incerta (favors attachment to nonpolar surfaces).

View Article and Find Full Text PDF

Marine biofouling has detrimental effects on the environment and economy, and current antifouling coatings research is aimed at environmentally benign, non-toxic materials. The possibility of using contact-active coatings is explored, by considering the antialgal activity of cationic poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) brushes. The antialgal activity was investigated via zoospore settlement and sporeling growth assays of the marine algae Ulva linza and U.

View Article and Find Full Text PDF

A series of eight novel siloxane-polyurethane fouling-release (FR) coatings were assessed for their FR performance in both the laboratory and in the field. Laboratory analysis included adhesion assessments of bacteria, microalgae, macroalgal spores, adult barnacles and pseudobarnacles using high-throughput screening techniques, while field evaluations were conducted in accordance with standardized testing methods at three different ocean testing sites over the course of six-months exposure. The data collected were subjected to statistical analysis in order to identify potential correlations.

View Article and Find Full Text PDF

The ability to fabricate nanostructured films by exploiting the phenomenon of microphase separation has made block copolymers an invaluable tool for a wide array of coating applications. Standard approaches to engineering nanodomains commonly involve the application of organic solvents, either through dissolution or annealing protocols, resulting in the release of volatile organic compounds (VOCs). In this paper, an aqueous-based method of fabricating low-VOC nanostructured block copolymer films is presented.

View Article and Find Full Text PDF

The resistance of charged polymers to biofouling was investigated by subjecting cationic (PDMAEMA), anionic (PSPMA), neutral (PHEMA-co-PEG10MA), and zwitterionic (PSBMA) brushes to assays testing protein adsorption; attachment of the marine bacterium Cobetia marina; settlement and adhesion strength of zoospores of the green alga Ulva linza; settlement of barnacle (Balanus amphitrite and B. improvisus) cypris larvae; and field immersion tests. Several results go beyond the expected dependence on direct electrostatic attraction; PSPMA showed good resistance towards attachment of C.

View Article and Find Full Text PDF

Amphiphilic coatings are promising candidates for fouling-release applications. As hydrophilic components, polysaccharides are interesting and environmentally benign building blocks. We used covalently coupled alginic acid (AA) and hyaluronic acid (HA) and postmodified them with a hydrophobic fluorinated amine.

View Article and Find Full Text PDF

Block copolymers made from a poly(dimethyl siloxane) (Si) and a poly(meth)acrylate carrying oxyethylene (EG) or fluoroalkyl (AF) side chains were synthesized and incorporated as surface-active components into a silicone matrix to produce cross-linked films with different surface hydrophilicity/phobicity. Near-edge X-ray absorption fine structure (NEXAFS) studies showed that film surfaces containing Si-EG were largely populated by the siloxane, with the oxyethylene chains present only to a minor extent. In contrast, the fluorinated block was selectively segregated to the polymer-air interface in films containing Si-AF as probed by NEXAFS and X-ray photoelectron spectroscopy (XPS) analyses.

View Article and Find Full Text PDF

Interaction of zoospores of Ulva linza with cationic, arginine-rich oligopeptide self-assembled monolayers (SAMs) is characterized by rapid settlement. Some spores settle (ie permanently attach) in a 'normal' manner involving the secretion of a permanent adhesive, retraction of the flagella and cell wall formation, whilst others undergo 'pseudosettlement' whereby motile spores are trapped (attached) on the SAM surface without undergoing the normal metamorphosis into a settled spore. Holographic microscopy was used to record videos of swimming zoospores in the vicinity of surfaces with different cationic oligopeptide concentrations to provide time-resolved insights into processes associated with attachment of spores.

View Article and Find Full Text PDF

The antifouling (AF) properties of oligo(lactose)-based self-assembled monolayers (SAMs), using four different proteins, zoospores of the green alga Ulva linza and cells of the diatom Navicula incerta, were investigated. The SAM-forming alkylthiols, which contained 1, 2 or 3 lactose units, showed significant variation in AF properties, with no differences in wettability. Non-specific adsorption of albumin and pepsin was low on all surfaces.

View Article and Find Full Text PDF

Among the first events after immersion of surfaces in the ocean is surface 'conditioning'. Here, the accumulation and composition of the conditioning films formed after immersion in the ocean are analyzed. In order to account for different surface chemistries, five self-assembled monolayers that differ in resistance to microfouling and wettability were used.

View Article and Find Full Text PDF

Zwitterionic polymers are non-fouling materials with immense potential for a range of biological applications. Here, we describe the resistance of zwitterionic self-assembled monolayers prepared from different solution ratios of positively and negatively charged thiols towards the adhesion of proteins, zoospores of the green alga Ulva linza, and cells of the unicellular alga Navicula perminuta. While mixed zwitterionic surfaces with a high hydrophilic nature significantly reduced the adhesion strength of the two algae, the positively and negatively charged components were far less effective.

View Article and Find Full Text PDF

Understanding how surface physicochemical properties influence the settlement and adhesion of marine fouling organisms is important for the development of effective and environmentally benign marine antifouling coatings. We demonstrate that the thickness of random poly(HEMA-co-PEG10MA) copolymer brushes affect antifouling behavior. Films of thicknesses ranging from 50 to 1000 Å were prepared via surface-initiated atom-transfer radical polymerization and characterized using infrared spectroscopy, ellipsometry, atomic force microscopy and contact angle measurements.

View Article and Find Full Text PDF

The ideal marine antifouling (AF)/fouling-release (FR) coating should be non-toxic, while effectively either resisting the attachment of marine organisms (AF) or significantly reducing their strength of attachment (FR). Many recent studies have shown that amphiphilic polymeric materials provide a promising solution to producing such coatings due to their surface dual functionality. In this work, poly(ethylene glycol) (PEG) of different molecular weights (Mw = 350, 550) was coupled to a saturated difunctional alkyl alcohol to generate amphiphilic surfactants (PEG-hydrocarbon-OH).

View Article and Find Full Text PDF

Amphiphilic polymers, specifically combinations of hydrophilic and hydrophobic residues, have been shown to be effective as antifouling materials against the algae and diatoms. Here we use the inherent sequence specificity of polypeptoids made by solid-phase synthesis to show that the sequence of hydrophilic (methoxy) and hydrophobic (fluorinated) moieties affects both antifouling and fouling release of . The platform used to test these sequences was a polystyrene--poly(ethylene oxide--allyl glycidyl ether) (PS--P(EO--AGE)) scaffold, where the polypeptoids are attached to the scaffold using thiol-ene click chemistry.

View Article and Find Full Text PDF

Surface-active polymers derived from styrene monomers containing siloxane (S), fluoroalkyl (F) and/or ethoxylated (E) side chains were blended with an elastomer matrix, either poly(dimethyl siloxane) (PDMS) or poly(styrene-b-(ethylene-co-butylene)-b-styrene) (SEBS), and spray-coated on top of PDMS or SEBS preformed films. By contact angle and X-ray photoelectron spectroscopy measurements, it was found that the surface-active polymer preferentially populated the outermost layers of the coating, despite its low content in the blend. However, the self-segregation process and the response to the external environment strongly depended on both the chemistry of the polymer and the type of matrix used for the blend.

View Article and Find Full Text PDF

Marine biofouling is a longstanding problem because of the constant challenges placed by various fouling species and increasingly restricted environmental regulations for antifouling coatings. Novel nonbiocidal strategies to control biofouling will necessitate a multifunctional approach to coating design. Here we show that slippery liquid-infused porous surfaces (SLIPSs) provide another possible strategy to obtaining promising antifouling coatings.

View Article and Find Full Text PDF

A versatile, photochemical surface-modification approach using nitrene-insertion reactions has been employed to develop an ultrathin, two-component, polymer-gradient coating. Perfluorophenyl azide (PFPA) acted as the photosensitive moiety, forming a nitrene radical upon 254 nm UV exposure. Cationic poly(allyl amine) was grafted with PFPA and surface-anchored onto silicon wafers by means of electrostatic self-assembly.

View Article and Find Full Text PDF