Publications by authors named "Callie W Babbitt"

The COVID-19 pandemic caused unprecedented disruptions to food systems, leading to both food shortages and food waste across the supply chain. These disruptions have, in turn, altered how people consume and then ultimately discard food. To better understand these impacts, their underlying drivers, and their sustainability implications, this study surveyed U.

View Article and Find Full Text PDF

Consumer electronic products have a complex life cycle, characterized by environmental, social, and economic impacts and benefits associated with their manufacturing, use, and disposal at end-of-life. Accurately analysing these trade-offs and creating sustainable solutions requires data about the materials and components that make up these devices. Such information is rarely disclosed by manufacturers and only exists in the open literature in disparate case study format.

View Article and Find Full Text PDF

Production of engineered carbon-based nanomaterials (CNMs) is rising, with increased risk of release to the environment during production, use, and disposal. This trend highlights a need to understand potential impacts of CNMs on the natural environment. Fullerenes are an emerging class of CNMs that are insoluble in water, and form aggregates that settle quickly, suggesting higher relative vulnerability of aquatic benthic ecosystems.

View Article and Find Full Text PDF

Carbonaceous nanomaterials, such as fullerenes (C60, C70) and the derivative phenyl-C61-butyric acid methyl ester (PCBM), have promising application in solar energy technologies. Although the acute ecotoxicity of C60 has been reported widely in the literature, ecotoxicity assays for different fullerene forms and broader ecosystem impact studies remain scarce. To address these knowledge gaps, acute, chronic, and life stage exposure studies with freshwater zooplankton, Daphnia magna and Daphnia pulex, were performed for each material.

View Article and Find Full Text PDF

While engineered nanomaterials (ENMs) are increasingly incorporated in diverse applications, risks of ENM adoption remain difficult to predict and mitigate proactively. Current decision-making tools do not adequately account for ENM uncertainties including varying functional forms, unique environmental behavior, economic costs, unknown supply and demand, and upstream emissions. The complexity of the ENM system necessitates a novel approach: in this study, the adaptation of an investment portfolio optimization model is demonstrated for optimization of ENM use in renewable energy technologies.

View Article and Find Full Text PDF

Development of lithium-ion battery recycling systems is a current focus of much research; however, significant research remains to optimize the process. One key area not studied is the utilization of mechanical pre-recycling steps to improve overall yield. This work proposes a pre-recycling process, including mechanical shredding and size-based sorting steps, with the goal of potential future scale-up to the industrial level.

View Article and Find Full Text PDF

A new approach for quantifying the net environmental impact of a "community" of interrelated products is demonstrated for consumer electronics owned by an average U.S. household over a 15-year period (1992-2007).

View Article and Find Full Text PDF

While disposal bans of lithium-ion batteries are gaining in popularity, the infrastructure required to recycle these batteries has not yet fully emerged and the economic motivation for this type of recycling system has not yet been quantified comprehensively. This study combines economic modeling and fundamental material characterization methods to quantify economic trade-offs for lithium ion batteries at their end-of-life. Results show that as chemistries transition from lithium-cobalt based cathodes to less costly chemistries, battery recovery value decreases along with the initial value of the raw materials used.

View Article and Find Full Text PDF

A methodology that integrates life cycle assessment (LCA) with thermodynamic analysis is developed and applied to evaluate the environmental impacts of producing biofuels from waste biomass, including biodiesel from waste cooking oil, ethanol from corn stover, and compressed natural gas from municipal solid wastes. Solid oxide fuel cell-based auxiliary power units using bio-fuel as the hydrogen precursor enable generation of auxiliary electricity for idling heavy-duty trucks. Thermodynamic analysis is applied to evaluate the fuel conversion efficiency and determine the amount of fuel feedstock needed to generate a unit of electrical power.

View Article and Find Full Text PDF

Institutions both public and private face a challenge to develop policies to manage purchase, use, and disposal of electronics. Environmental considerations play an increasing role in addition to traditional factors of cost, performance and security. Characterizing current disposition practices for end-of-life electronics is a key step in developing policies that prevent negative environmental and health impacts while maximizing potential for positive social and economic benefits though reuse.

View Article and Find Full Text PDF

Fullerenes are increasingly being used in medical, environmental, and electronic applications due to their unique structural and electronic properties. However, the energy and environmental impacts associated with their commercial-scale production have not yet been fully investigated. In this work, the life cycle embodied energy of C(60) and C(70) fullerenes has been quantified from cradle-to-gate, including the relative contributions from synthesis, separation, purification, and functionalization processes, representing a more comprehensive scope than used in previous fullerene life cycle studies.

View Article and Find Full Text PDF

Methanol-oxidizing bacteria may play an important role in the development and use of biological treatment systems for the removal of methanol from industrial effluents. Optimization of methanol degradation potential in such systems is contingent on availability of nutrients, such as nitrogen, in the most favorable form and concentration. To that end, this study examined the variation in growth, methanol degradation, and bacterial diversity of two mixed methylotrophic cultures that were provided nitrogen either as ammonium or nitrate and in three different concentrations.

View Article and Find Full Text PDF

Product lifespan is a fundamental variable in understanding the environmental impacts associated with the life cycle of products. Existing life cycle and materials flow studies of products, almost without exception, consider lifespan to be constant over time. To determine the validity of this assumption, this study provides an empirical documentation of the long-term evolution of personal computer lifespan, using a major U.

View Article and Find Full Text PDF

Motivated by the need to establish an economical and environmentally friendly methanol control technology for the pulp and paper industry, a bench-scale activated carbon biofiltration system was developed. This system was evaluated for its performance in removing methanol from an artificially contaminated air stream and characterized for its bacterial diversity over time, under varied methanol loading rates, and in different spatial regions of the filter. The biofilter system, composed of a novel packing mixture, provided an excellent support for growth and activity of methanol-degrading bacteria, resulting in approximately 100% methanol removal efficiency for loading rates of 1-17 g/m(3) packing/h, when operated both with and without inoculum containing enriched methanol-degrading bacteria.

View Article and Find Full Text PDF