Publications by authors named "Callie P Wigington"

Short linear motifs (SLiMs) drive dynamic protein-protein interactions essential for signaling, but sequence degeneracy and low binding affinities make them difficult to identify. We harnessed unbiased systematic approaches for SLiM discovery to elucidate the regulatory network of calcineurin (CN)/PP2B, the Ca-activated phosphatase that recognizes LxVP and PxIxIT motifs. In vitro proteome-wide detection of CN-binding peptides, in vivo SLiM-dependent proximity labeling, and in silico modeling of motif determinants uncovered unanticipated CN interactors, including NOTCH1, which we establish as a CN substrate.

View Article and Find Full Text PDF

Polyadenosine RNA-binding proteins (Pabs) regulate multiple steps in gene expression. This protein family includes the well studied Pabs, PABPN1 and PABPC1, as well as the newly characterized Pab, zinc finger CCCH-type containing protein 14 (ZC3H14). Mutations in ZC3H14 are linked to a form of intellectual disability.

View Article and Find Full Text PDF

Post-transcriptional processing of mRNA transcripts plays a critical role in establishing the gene expression profile of a cell. Such processing events are mediated by a host of factors, including RNA-binding proteins and microRNAs. A number of critical cellular pathways are subject to regulation at multiple levels that allow fine-tuning of key biological responses.

View Article and Find Full Text PDF

Poly(A) RNA-binding proteins (Pabs) bind with high affinity and specificity to polyadenosine RNA. Textbook models show a nuclear Pab, PABPN1, and a cytoplasmic Pab, PABPC, where the nuclear PABPN1 modulates poly(A) tail length and the cytoplasmic PABPC stabilizes poly(A) RNA in the cytoplasm and also enhances translation. While these conventional roles are critically important, the Pab family has expanded recently both in number and in function.

View Article and Find Full Text PDF