Publications by authors named "Callie I Higgins"

Article Synopsis
  • Vat photopolymerization creates 3D parts by using patterned light to cure liquid resin, with the depth of curing measured against radiant exposure.* -
  • The commonly used Jacobs model, which applies to monochromatic light sources, often shows significant discrepancies in real-world applications, prompting the need for an updated approach.* -
  • An extended polychromatic model that incorporates the effects of broad spectrum light sources (like LEDs) has been developed, which improves the fitting of experimental data and enhances understanding of the working curve in relation to photophysical parameters.*
View Article and Find Full Text PDF

The working curve informs resin properties and print parameters for stereolithography, digital light processing, and other photopolymer additive manufacturing (PAM) technologies. First demonstrated in 1992, the working curve measurement of cure depth vs radiant exposure of light is now a foundational measurement in the field of PAM. Despite its widespread use in industry and academia, there is no formal method or procedure for performing the working curve measurement, raising questions about the utility of reported working curve parameters.

View Article and Find Full Text PDF

Data-driven U-net machine learning (ML) models, including the pix2pix conditional generative adversarial network (cGAN), are shown to predict 3D printed voxel geometry in digital light processing (DLP) additive manufacturing. A confocal microscopy-based workflow allows for the high-throughput acquisition of data on thousands of voxel interactions arising from randomly gray-scaled digital photomasks. Validation between prints and predictions shows accurate predictions with sub-pixel scale resolution.

View Article and Find Full Text PDF

Photopolymer additive manufacturing has become the subject of widespread interest in recent years due to its capacity to enable fabrication of difficult geometries that are impossible to build with traditional manufacturing methods. The flammability of photopolymer resin materials and the lattice structures enabled by 3D printing is a barrier to widespread adoption that has not yet been adequately addressed. Here, a water-based nanobrick wall coating is deposited on 3D printed parts with simple (i.

View Article and Find Full Text PDF

Vat photopolymerization (VP) is a rapidly growing category of additive manufacturing. As VP methods mature the expectation is that the quality of printed parts will be highly reproducible. At present, detailed characterization of the light engines used in liquid crystal display (LCD)-based VP systems is lacking and so it is unclear if they are built to sufficiently tight tolerances to meet the current and/or future needs of additive manufacturing.

View Article and Find Full Text PDF

3D printing is transforming traditional processing methods for applications ranging from tissue engineering to optics. To fulfill its maximum potential, 3D printing requires a robust technique for producing structures with precise three-dimensional (x, y and z) control of mechanical properties. Previous efforts to realize such spatial control of modulus within 3D printed parts have largely focused on low-resolution (mm to cm scale) multi-material processes and grayscale approaches that spatially vary the modulus in the x-y plane and energy dose-based ( = ) models that do not account for the resin's sub-linear response to irradiation intensity.

View Article and Find Full Text PDF

Stereolithography (SLA) and digital light processing (DLP) are powerful additive manufacturing techniques that address a wide range of applications including regenerative medicine, prototyping, and manufacturing. Unfortunately, these printing processes introduce micrometer-scale anisotropic inhomogeneities due to the resin absorptivity, diffusivity, reaction kinetics, and swelling during the requisite photoexposure. Previously, it has not been possible to characterize high-resolution mechanical heterogeneity as it develops during the printing process.

View Article and Find Full Text PDF

Understanding the three-dimensional (3D) mechanical and chemical properties of distinctly different, adjacent biological tissues is crucial to mimicking their complex properties with materials. 3D printing is a technique often employed to spatially control the distribution of the biomaterials, such as hydrogels, of interest, but it is difficult to print both mechanically robust (high modulus and toughness) and biocompatible (low modulus) hydrogels in a single structure. Moreover, due to the fast diffusion of mobile species during printing and nonequilibrium swelling conditions of low-solids-content hydrogels, it is challenging to form the high-fidelity structures required to mimic tissues.

View Article and Find Full Text PDF