To determine whether Neanderthal-derived genetic variation relates to functional connectivity patterns in the brains of living modern humans. Nearly 50,000 years ago, Neanderthals interbred with ancestors of modern humans, imparting a genetic legacy that lives on today. The vestiges of this Neanderthal-derived genetic variation have been previously shown to be enriched in genes coding for neurogenesis and myelination and to alter skull shape and brain structure in living people.
View Article and Find Full Text PDFIncreased expression of the 3.1 isoform of the KCNH2 potassium channel has been associated with cognitive dysfunction and with schizophrenia, yet little is known about the underlying pathophysiological mechanisms. Here, by using in vivo wireless local field potential recordings during working memory processing, in vitro brain slice whole-cell patching recordings and in vivo stereotaxic hippocampal injection of AAV-encoded expression, we identified specific and delayed disruption of hippocampal-mPFC synaptic transmission and functional connectivity associated with reductions of SERPING1, CFH, and CD74 in the KCNH2-3.
View Article and Find Full Text PDFA single-nucleotide polymorphism in the promoter region of the Matrix Metalloproteinase-9 (MMP9) gene, rs3918242, has been shown to affect MMP9 expression in macrophages and was associated with schizophrenia by two independent groups. However, rs3918242's effects on MMP9 expression were not replicable in cell lines or brain tissue. Additionally, publically available data indicate that rs3918242 genotype is related not to MMP9 expression, but rather to expression of SLC12A5, a nearby gene coding for a K+/Cl- cotransporter, whose expression has also been related to schizophrenia.
View Article and Find Full Text PDFImportance: Deviation from normal adolescent brain development precedes manifestations of many major psychiatric symptoms. Such altered developmental trajectories in adolescents may be linked to genetic risk for psychopathology.
Objective: To identify genetic variants associated with adolescent brain structure and explore psychopathologic relevance of such associations.
Brain phenotypes showing environmental influence may help clarify unexplained associations between urban exposure and psychiatric risk. Heritable prefrontal fMRI activation during working memory (WM) is such a phenotype. We hypothesized that urban upbringing (childhood urbanicity) would alter this phenotype and interact with dopamine genes that regulate prefrontal function during WM.
View Article and Find Full Text PDFBiol Psychiatry Cogn Neurosci Neuroimaging
November 2017
Background: We explored the cumulative effect of several late-onset Alzheimer's disease (LOAD) risk loci using a polygenic risk profile score (RPS) approach on measures of hippocampal function, cognition, and brain morphometry.
Methods: In a sample of 231 healthy control subjects (19-55 years of age), we used an RPS to study the effect of several LOAD risk loci reported in a recent meta-analysis on hippocampal function (determined by its engagement with blood oxygen level-dependent functional magnetic resonance imaging during episodic memory) and several cognitive metrics. We also studied effects on brain morphometry in an overlapping sample of 280 subjects.
The use of polygenic risk scores has become a practical translational approach to investigating the complex genetic architecture of schizophrenia, but the link between polygenic risk scores and pathophysiological components of this disorder has been the subject of limited research. We investigated in healthy volunteers whether schizophrenia polygenic risk score predicts hippocampal activity during simple memory encoding, which has been proposed as a risk-associated intermediate phenotype of schizophrenia. We analysed the relationship between polygenic risk scores and hippocampal activity in a discovery sample of 191 unrelated healthy volunteers from the USA and in two independent replication samples of 76 and 137 healthy unrelated participants from Europe and the USA, respectively.
View Article and Find Full Text PDFPrevious research has identified (1) a "deficit" subtype of schizophrenia characterized by enduring negative symptoms and diminished emotionality and (2) a "distress" subtype associated with high emotionality-including anxiety, depression, and stress sensitivity. Individuals in deficit and distress categories differ sharply in development, clinical course and behavior, and show distinct biological markers, perhaps signaling different etiologies. We tested whether deficit and distress subtypes would emerge from a simple but novel data-driven subgrouping analysis, based on Positive and Negative Syndrome Scale (PANSS) negative and distress symptom dimensions, and whether subgrouping was informative regarding other facets of behavior and brain function.
View Article and Find Full Text PDFWorking memory (WM) supports a broad range of intelligent cognition and has been the subject of rich cognitive and neural characterization. However, the highest ranges of WM have not been fully characterized, especially for verbal information. Tasks developed to test multiple levels of WM demand (load) currently predominate brain-based WM research.
View Article and Find Full Text PDFHigh-resolution three-dimensional magnetic resonance imaging (3D-MRI) is being increasingly used to delineate morphological changes underlying neuropsychiatric disorders. Unfortunately, artifacts frequently compromise the utility of 3D-MRI yielding irreproducible results, from both type I and type II errors. It is therefore critical to screen 3D-MRIs for artifacts before use.
View Article and Find Full Text PDFA data-driven hypothesis-free genome-wide association (GWA) approach in imaging genetics studies allows screening the entire genome to discover novel genes that modulate brain structure, chemistry, and function. However, a whole brain voxel-wise analysis approach in such genome-wide based imaging genetic studies can be computationally intense and also likely has low statistical power since a stringent multiple comparisons correction is needed for searching over the entire genome and brain. In imaging genetics with functional magnetic resonance imaging (fMRI) phenotypes, since many experimental paradigms activate focal regions that can be pre-specified based on a priori knowledge, reducing the voxel-wise search to single-value summary measures within a priori ROIs could prove efficient and promising.
View Article and Find Full Text PDFPerhaps the most widely studied effect to emerge from the combination of neuroimaging and human genetics is the association of the COMT-Val(108/158)Met polymorphism with prefrontal activity during working memory. COMT-Val is a putative risk factor in schizophrenia, which is characterized by disordered prefrontal function. Work in healthy populations has sought to characterize mechanisms by which the valine (Val) allele may lead to disadvantaged prefrontal cognition.
View Article and Find Full Text PDFImportance: One approach to understanding the genetic complexity of schizophrenia is to study associated behavioral and biological phenotypes that may be more directly linked to genetic variation.
Objective: To identify single-nucleotide polymorphisms associated with general cognitive ability (g) in people with schizophrenia and control individuals.
Design, Setting, And Participants: Genomewide association study, followed by analyses in unaffected siblings and independent schizophrenia samples, functional magnetic resonance imaging studies of brain physiology in vivo, and RNA sequencing in postmortem brain samples.
Early in development, GABA, an inhibitory neurotransmitter in adults, is excitatory. NKCC1 (SLC12A2) encodes one of two cation chloride cotransporters mediating the conversion of GABA from excitatory to inhibitory. Using 3' and 5' RACE and PCR, we verified previously characterized alternative transcripts of NKCC1a (1-27) and NKCC1b (1-27(Δ21)), identified new NKCC1 transcripts, and explored their expression patterns during human prefrontal cortical development.
View Article and Find Full Text PDFThe neuregulin 3 gene (NRG3) plays pleiotropic roles in neurodevelopment and is a putative susceptibility locus for schizophrenia. Specifically, the T allele of NRG3 rs10748842 has been associated with illness risk, altered cognitive function, and the expression of a novel splice isoform in prefrontal cortex (PFC), but the neural system effects are unexplored. Here, we report an association between rs10748842 and PFC physiology as measured by functional magnetic resonance imaging of human working memory performance, where a convincing link between increased genetic risk for schizophrenia and increased activation in some PFC areas has been established.
View Article and Find Full Text PDFImportance: Declarative memory-the ability to learn, store, and retrieve information-has been consistently reported to be altered in schizophrenia, and hippocampal-parahippocampal dysfunction has been implicated in this deficit. To elucidate the possible role of genetic risk factors in such findings, it is necessary to study healthy relatives of patients with schizophrenia who carry risk-associated genes but not the confounding factors related to the disorder.
Objective: To investigate whether altered brain responses, particularly in the hippocampus and parahippocampus, during the encoding phase of a simple declarative memory task are also observed in unaffected siblings who are at increased genetic risk for schizophrenia.
Background: Episodic memory (EM) declines with age and the rate of decline is variable across individuals. A single nucleotide polymorphism (rs17070145) in the WWC1 gene that encodes the KIBRA protein critical for long-term potentiation and memory consolidation has previously been associated with EM performance, as well as differences in hippocampal engagement during EM tasks using functional magnetic resonance imaging (fMRI). In the current study, we explore the effect of this polymorphism on EM-related activity and cognitive performance across the adult life span using fMRI.
View Article and Find Full Text PDFCognitive functions are highly heritable and the impact of complex genetic interactions, though undoubtedly important, has received little investigation. Here we show in an animal model and in a human neuroimaging experiment a consistent non-linear interaction between two genes--catechol-O-methyl transferase (COMT) and dysbindin (dys; dystrobrevin-binding protein 1 (DTNBP1))--implicated through different mechanisms in cortical dopamine signaling and prefrontal cognitive function. In mice, we found that a single genetic mutation reducing expression of either COMT or DTNBP1 alone produced working memory advantages, while, in dramatic contrast, genetic reduction of both in the same mouse produced working memory deficits.
View Article and Find Full Text PDFHippocampal development is coordinated by both extracellular factors like GABA neurotransmission and intracellular components like DISC1. We previously reported that SLC12A2-dependent GABA depolarization and DISC1 coregulate hippocampal neuronal development, and 2 SNPs in these genes linked to mRNA expression interactively increase schizophrenia risk. Using functional MRI, we now confirm this biological interaction in vivo by showing in 2 independent samples of healthy individuals (total N = 349) that subjects homozygous for both risk alleles evince dramatically decreased hippocampal area activation (Cohen's d = 0.
View Article and Find Full Text PDFBackground: Attention is the capacity to flexibly orient behaviors and thoughts towards a goal by selecting and integrating relevant contextual information. The dorsal cingulate (dCC) and prefrontal (PFC) cortices play critical roles in attention. Evidence indicates that catechol-O-methyltransferase (COMT) modulates dopaminergic tone in the PFC and dCC.
View Article and Find Full Text PDFAberrant activity in brain regions underlying various aspects of executive cognition has been reported in patients with schizophrenia and in their healthy relatives, suggesting an association with genetic liability. The aim of this study was to investigate brain responses to selective aspects of cognitive control in unaffected siblings who are at increased genetic risk of schizophrenia. Altogether, 65 non-affected siblings, 70 patients with schizophrenia spectrum disorders, and 235 normal controls participated in this study.
View Article and Find Full Text PDFGenetic variants in GPR85 (SREB2: rs56080411 and rs56039557) have been associated with risk for schizophrenia. Here, we test the hypothesis that these variants impact on brain function in normal subjects, measured with functional magnetic resonance imaging (fMRI) paradigms that target regions with greatest SREB2 expression (hippocampal formation and amygdaloid complex). During a facial emotion recognition paradigm, a significant interaction of rs56080411 genotype by sex was found in the left amygdaloid complex (male risk allele carriers showed less activation than male homozygotes for the non-risk allele, while females showed the opposite pattern).
View Article and Find Full Text PDF