Publications by authors named "Callaway E"

Parvalbumin (PV)-expressing GABAergic neurons are the largest class of inhibitory neocortical cells. We visualize brain-wide, monosynaptic inputs to PV neurons in mouse barrel cortex. We develop intersectional rabies virus tracing to specifically target GABAergic PV cells and exclude a small fraction of excitatory PV cells from our starter population.

View Article and Find Full Text PDF

Higher-order visual thalamus communicates broadly and bi-directionally with primary and extrastriate cortical areas in various mammals. In primates, the pulvinar is a topographically and functionally organized thalamic nucleus that is largely dedicated to visual processing. Still, a more granular connectivity map is needed to understand the role of thalamocortical loops in visually guided behavior.

View Article and Find Full Text PDF

Previous studies support the textbook model that shape and color are extracted by distinct neurons in primate primary visual cortex (V1). However, rigorous testing of this model requires sampling a larger stimulus space than previously possible. We used stable GCaMP6f expression and two-photon calcium imaging to probe a very large spatial and chromatic visual stimulus space and map functional microarchitecture of thousands of neurons with single-cell resolution.

View Article and Find Full Text PDF

Sensory selection and movement locally and globally modulate neural responses in seemingly similar ways. For example, locomotion enhances visual responses in mouse primary visual cortex (V1), resembling the effects of spatial attention on primate visual cortical activity. However, interactions between these local and global mechanisms and the resulting effects on perceptual behavior remain largely unknown.

View Article and Find Full Text PDF
Article Synopsis
  • Higher-order thalamic nuclei, like the visual pulvinar in humans, are crucial for linking different brain regions and influencing cortical functions, but understanding their roles is complicated due to their intricate anatomy and cognitive involvement.
  • Researchers mapped the connections and recorded brain activity in a mouse equivalent of the pulvinar, called the lateral posterior thalamic nucleus (LP), identifying three subregions with distinct functions and connections related to visual processing.
  • The study found that the visual cortex and superior colliculus influence different LP subregions, which helps clarify the input sources, functional characteristics, and targets in these thalamic circuits, offering insights into how they operate in visual perception.
View Article and Find Full Text PDF

Functionally and anatomically distinct cortical substructures, such as areas or layers, contain different principal neuron (PN) subtypes that generate output signals representing particular information. Various types of cortical inhibitory interneurons (INs) differentially but coordinately regulate PN activity. Despite a potential determinant for functional specialization of PN subtypes, the spatial organization of IN subtypes that innervate defined PN subtypes remains unknown.

View Article and Find Full Text PDF

Neuronal activity in sensory regions can be modulated by attention, behavioral state, motor output, learning, and memory. This is often done through direct feedback or centrifugal projections originating from higher processing areas. Though, functionally important, the identity and organization of these feedback connections remain poorly characterized.

View Article and Find Full Text PDF

The ability to detect moving objects is an ethologically salient function. Direction-selective neurons have been identified in the retina, thalamus, and cortex of many species, but their homology has remained unclear. For instance, it is unknown whether direction-selective retinal ganglion cells (DSGCs) exist in primates and, if so, whether they are the equivalent to mouse and rabbit DSGCs.

View Article and Find Full Text PDF

Multicomponent therapy has gained interest for its potential to synergize and subsequently lower the effective dose of each constituent required to reduce colon cancer risk. We have previously showed that rapidly cycling Lgr5 stem cells are exquisitely sensitive to extrinsic dietary factors that modulate colon cancer risk. In the present study, we quantified the dose-dependent synergistic properties of dietary n-3 polyunsaturated fatty acids (PUFA) and curcumin (Cur) to promote targeted apoptotic deletion of damaged colonic Lgr5 stem cells.

View Article and Find Full Text PDF