Pseudomonas aeruginosa is a ubiquitous bacterium that survives in many environments, including as an acute and chronic pathogen in humans. Substantial evidence shows that P. aeruginosa behavior is affected by its motility, and appendages known as flagella and type IV pili (TFP) are known to confer such motility.
View Article and Find Full Text PDFSecondary ion mass spectrometry (SIMS) and confocal Raman microscopy (CRM) are combined to analyze the chemical composition of cultured Pseudomonas aeruginosa biofilms, providing complementary chemical information for multiple analytes within the sample. Precise spatial correlation between SIMS and CRM images is achieved by applying a chemical microdroplet array to the sample surface which is used to navigate the sample, relocate regions of interest, and align image data. CRM is then employed to nondestructively detect broad molecular constituent classes-including proteins, carbohydrates, and, for the first time, quinolone signaling molecules-in Pseudomonas-derived biofilms.
View Article and Find Full Text PDFMass spectrometry imaging (MSI) is a versatile tool for visualizing molecular distributions in complex biological specimens, but locating microscopic chemical features of interest can be challenging in samples that lack a well-defined anatomy. To address this issue, we developed a correlated imaging approach that begins with performing matrix-assisted laser desorption/ionization (MALDI) MSI to obtain low-resolution molecular maps of a sample. The resulting maps are then used to direct subsequent microscopic secondary ion mass spectrometry (SIMS) imaging and tandem mass spectrometry (MS/MS) experiments to examine selected chemical regions of interest.
View Article and Find Full Text PDFBacteria growing as surface attached biofilms differ significantly from planktonic cells in several important traits that are reflected in the spatiotemporal organization of the cells and the extracellular polymeric substances they secrete. The structural and chemical features that define these biofilms are explored here using a combination of matrix-assisted laser desorption ionization mass spectrometry (MALDI MS) and confocal Raman microspectroscopies (CRM) to characterize and compare the composition and distribution of biomolecules found in biofilms and planktonic cells of the bacterium Pseudomonas aeruginosa. Three-day old P.
View Article and Find Full Text PDF