J Environ Manage
November 2024
Municipal wastewater (MW) and industrial wastewater from juice processing (IWJ) were blended in different proportions to assess the effect of the carbon/nitrogen (C/N) ratio on pollutant removal, microalgal biomass (MB) cultivation, and the accumulation of carotenoids and biocompounds. MB development was not observed in treatments with higher C/N ratios (>30.67).
View Article and Find Full Text PDFThird-generation biofuels from microalgae are becoming necessary for sustainable energy. In this context, this study explores the hydrothermal liquefaction (HTL) of microalgae biomass grown in wastewater, consisting of 30% Chlorella vulgaris, 69% Tetradesmus obliquus, and 1% cyanobacteria Limnothrix planctonica, and the subsequent upgrading of the produced bio-oil. The novelty of the work lies in integrating microalgae cultivation in wastewater with HTL in a biorefinery approach, enhanced using a catalyst to upgrade the bio-oil.
View Article and Find Full Text PDFThe production of biogas from microalgae has gained attention due to their rapid growth, CO sequestration, and minimal land use. This study uses life cycle assessment to assess the environmental impacts of biogas production from wastewater-grown microalgae through anaerobic digestion within an optimized microalgae-based system. Using SimaPro® 9 software, 3 scenarios were modeled considering the ReCiPe v1.
View Article and Find Full Text PDFThe present paper compared, through life cycle assessment (LCA), the production of aviation biofuel from two hydrothermal routes of microalgae cultivated in wastewater. Hydrothermal liquefaction (HTL) and gasification followed by Fischer-Tropsch synthesis (G + FT) were compared. Both routes included biomass production, hydrotreatment for biofuel upgrading, and product fractionation.
View Article and Find Full Text PDFRecently, hybrid systems, such as those incorporating high-rate algal ponds (HRAPs) and biofilm reactors (BRs), have shown promise in treating domestic wastewater while cultivating microalgae. In this context, the objective of the present study was to determine an improved scraping frequency to maximize microalgae biomass productivity in a mix of industrial (fruit-based juice production) and domestic wastewater. The mix was set to balance the carbon/nitrogen ratio.
View Article and Find Full Text PDFThe current technical issues related to the conversion of algal biomass into aviation biofuel through hydrothermal liquefaction (HTL) and the upgrading of bio-oil through hydrotreatment have been reviewed and consolidated. HTL is a promising route for converting microalgae into sustainable aviation fuel (SAF). However, HTL must be followed by the hydrotreatment of bio-oil to ensure that its composition and properties are compatible with SAF standards.
View Article and Find Full Text PDFMicroalgae biomass has attracted attention as a feedstock to produce biofuels, biofertilizers, and pigments. However, the high production cost associated with cultivation and separation stages is a challenge for the microalgae biotechnology application on a large scale. A promising approach to overcome the technical-economic limitations of microalgae production is using wastewater as a nutrient and water source for cultivation.
View Article and Find Full Text PDFCharacteristics of an acid soil cultivated with Urochloa brizantha cv. Marandu were evaluated in relation to two types of fertilization: a conventional one, chemical based on nitrogen and potassium, and a biofertilizer, based on microalgae biomass. The results were compared among three treatments, control, conventional, and biological fertilization, with seven replications each.
View Article and Find Full Text PDFMicroalgae biomass is a versatile feedstock with a variable composition that can be submitted to several conversion routes. Considering the increasing energy demand and the context of third-generation biofuels, algae can fulfill the increasing global demand for energy with the additional benefit of environmental impact mitigation. While biodiesel and biogas are widely consolidated and reviewed, emerging algal-based biofuels such as biohydrogen, biokerosene, and biomethane are cutting-edge technologies in earlier stages of development.
View Article and Find Full Text PDFMicroalgae cultivation in swine wastewater (SW) allows the removal of nutrients and biomass production. However, SW is known for its Cu contamination, and its effects on algae cultivation systems such as high-rate algal ponds (HRAPs) are poorly understood. This gap in the literature limits the proposition of adequate concentrations of Cu to optimise SW treatment and resource recovery in HRAPs.
View Article and Find Full Text PDFMicroalgae are a potential feedstock for several bioproducts, mainly from its primary and secondary metabolites. Lipids can be converted in high-value polyunsaturated fatty acids (PUFA) such as omega-3, carbohydrates are potential biohydrogen (bioH) sources, proteins can be converted into biopolymers (such as bioplastics) and pigments can achieve high concentrations of valuable carotenoids. This work comprehends the current practices for the production of such products from microalgae biomass, with insights on technical performance, environmental and economical sustainability.
View Article and Find Full Text PDFMicroalgae-based treatment can be applied to the bioremediation of agro-industrial wastewater, aiming at a circular economy approach. The present work compared the technical-environmental feasibility of operating a bubble column photobioreactor (PBR) and a high rate pond (HRP) for microalgae biomass production and wastewater treatment of a meat processing facility. The comparison was made regarding biomass productivity, phytoplankton composition, treatment efficiency, life cycle assessment, and energy balance.
View Article and Find Full Text PDFMicroalgae biomass contributes to effluent bioremediation. It is a concentrated source of nutrients and organic carbon, making it a potential alternative as a soil biostimulant. In this context, this study aimed to evaluate the soil application of microalgae biomass produced from the meat processing industry effluent treatment.
View Article and Find Full Text PDFThis study aimed to evaluate the simultaneous interferences of Cu and Zn found in swine wastewater (SW) in the development of microalgae considering real conditions of cultivation in high rate algal ponds (HRAPs). Ten HRAPs on a pilot scale were fed with SW with different mixtures of Cu (0.5-3.
View Article and Find Full Text PDFAnthropogenic activities responsible for modifying climatic regimes and land use and land cover (LULC) have been altering fire behavior even in regions with natural occurrences, such as the Pantanal. This biome was highlighted in 2020 due to the record number of fire foci and burned areas registered. Thus, this study aimed to understand how changes in LULC and climate affect the spatial, temporal and magnitude dynamics of fire foci.
View Article and Find Full Text PDFThis study evaluated the effect of high rate ponds (HRPs) depth on algal biomass production during domestic wastewater treatment. HRPs were evaluated for 20, 30, and 40 cm depths, with and without CO supplementation. In addition, 40 cm deep HRP with ultraviolet (UV) pre-disinfection was evaluated.
View Article and Find Full Text PDFTrophic state indexes (TSI) guide management strategies regarding eutrophication control worldwide. Such indexes usually consider chlorophyll-a (Chl-a), total phosphorus (TP), and Secchi disk depth (SDD) as independent variables for estimating aquatic productivity and the degree of impairment. TSIs for each of these components are frequently averaged to produce a single TSI value associated with a trophic state classification (e.
View Article and Find Full Text PDFTo optimize the swine wastewater (SWW) treatment, this study investigated different hydraulic retention times (HRTs) for microalgae cultivation. For this purpose, five pilot-scale reactors operated in semi-continuous flow, with HRTs equal to 9, 12, 15, 18, 21 days were evaluated in terms of SWW polishing and biomass production. The effluent treatment was discussed accompanied by principal component analysis, which allowed identification of causes of variance in the data set, ideal for studies with real effluent and influenced by environmental conditions.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
September 2021
To investigate the feasibility of implementing decentralized sewage treatment systems aiming to meet environmental standards, the performance of three decentralized wastewater treatment plants (WWTPs) comprising septic tanks and anaerobic filters (ST+AF) was evaluated. The ability of the WWTPs to comply with the provisions of the legislation and the technical literature was investigated by monitoring physical and chemical parameters at the entrance and exit of the WWTPs, from May 2017 to August 2018. Considering that factors such as operational routine, design of treatment systems, and the existence of pluvial contributions to the sewage network can influence the performance of WWTPs, an investigation of these factors was conducted.
View Article and Find Full Text PDFWith the increasing demand for food, it is increasingly important to maintain soil fertility with the application of fertilizers to supply the nutritional needs of plants. However, the nutrients applied to the soil can suffer significant losses, impacting the environment, and increasing production costs. Using alternative sources, such as microalgae biomass (MB) generated in the treatment of wastewater, in the production of organomineral fertilizers is a way to recover nutrients from the sewage, in addition to contributing to the improvement in soil fertility and favoring crop growth, which can guarantee agricultural sustainability.
View Article and Find Full Text PDFThe increase in global air temperatures as well as variability in rainfall shifts due to climate change has been affecting the dynamics of water level fluctuations and thermal regimes in lakes and reservoirs. It is expected that at the end of this decade, such impacts will be even more noticeable and may harm the inland waters use. However, little is known about the possible consequences of climate change in multipurpose subtropical reservoirs.
View Article and Find Full Text PDFMicroalgae biomass (MB) is a promising source of renewable energy, especially when the cultivation is associated with wastewater treatment. However, microalgae wastewater technologies still have much to improve. Additionally, microalgae biomass valorization routes need to be optimized to be a sustainable and feasible source of green bioenergy.
View Article and Find Full Text PDFHydrothermal carbonization is a thermochemical treatment whose objective is to convert carbohydrate components of a given biomass into carbon-rich material in an aqueous medium. Biomass of wastewater grown microalgae is among the various potential biomasses for this route. However, operational parameters of hydrothermal carbonization for different types of biomass are still being investigated.
View Article and Find Full Text PDFThe valuation of ecosystem services of pollution regulation in basins with partial monitoring does not have only one consolidated methodology which can be applied in all countries, biomes and across spatio-temporal scales. While different metrics can incorporate elements of uncertainty for decision makers, changes in land use, climate and sectoral demands in basins increase the need for the efficiency and complexity of valuation methods. Here, based on adapting a pre-existing method, we present a new ecosystem service valuation applied to river basins under different characteristics in the biomes of the Atlantic Forest and Brazilian savannah.
View Article and Find Full Text PDF