Surface self-diffusion coefficients have been measured for the model molecular glass o-terphenyl (OTP) through surface-grating decay driven by capillarity. The decay mechanism transitions from viscous flow at high temperatures to surface diffusion at low temperatures; for 1000 nm wavelength gratings, the transition occurs at Tg + 11 K. The surface diffusion of OTP is 10(8) times faster than bulk diffusion at Tg and even faster at lower temperatures because of its weaker temperature dependence.
View Article and Find Full Text PDFThe effect of physical aging on surface diffusion has been determined for two organic glasses, Indomethacin and Nifedipine. The two systems exhibit similar aging kinetics typical of organic glasses. Surface diffusivity remains unchanged despite significant bulk aging that nearly equilibrates the systems and increases the bulk relaxation time by orders of magnitude.
View Article and Find Full Text PDFSurface self-diffusion coefficients have been determined for the organic glass Nifedipine using the method of surface grating decay. The flattening of 1000 nm surface gratings occurs by viscous flow at 12 K or more above the glass transition temperature and by surface diffusion at lower temperatures. Surface diffusion is at least 10(7) times faster than bulk diffusion, indicating a highly mobile surface.
View Article and Find Full Text PDF