Publications by authors named "Caleb Scharf"

Computation, if treated as a set of physical processes that act on information represented by states of matter, encompasses biological systems, digital systems, and other constructs and may be a fundamental measure of living systems. The opportunity for biological computation, represented in the propagation and selection-driven evolution of information-carrying organic molecular structures, has been partially characterized in terms of planetary habitable zones (HZs) based on primary conditions such as temperature and the presence of liquid water. A generalization of this concept to computational zones (CZs) is proposed, with constraints set by three principal characteristics: capacity (including computation rates), energy, and instantiation (or substrate, including spatial extent).

View Article and Find Full Text PDF

It has been established theoretically that atmospheric thermal tides on rocky planets can lead to significant modifications of rotational evolution, both close to synchronous rotation and at faster rotations if certain resonant conditions are met. Here it is demonstrated that the normally considered dissipative gravitational tidal evolution of rocky planet rotation could, in principle, be "stalled" by thermal tide resonances for Earth-analog worlds in the liquid-water orbital zone of stars more massive than [Formula: see text]. The possibility of feedback effects between a planetary biosphere and the planetary rotational evolution is examined.

View Article and Find Full Text PDF

A feature of many of the chemical systems plausibly involved in the origins of terrestrial life is that they are complex and messy-producing a wide range of compounds via a wide range of mechanisms. However, the fundamental behaviour of such systems is currently not well understood; we do not have the tools to make statistical predictions about such complex chemical networks. This is, in part, due to a lack of quantitative data from which such a theory could be built; specifically, functional measurements of messy chemical systems.

View Article and Find Full Text PDF

A simple, heuristic formula with parallels to the Drake Equation is introduced to help focus discussion on open questions for the origins of life in a planetary context. This approach indicates a number of areas where quantitative progress can be made on parameter estimation for determining origins of life probabilities, based on constraints from Bayesian approaches. We discuss a variety of "microscale" factors and their role in determining "macroscale" abiogenesis probabilities on suitable planets.

View Article and Find Full Text PDF