Br J Surg
August 2024
Manual delineation of liver segments on computed tomography (CT) images for primary/secondary liver cancer (LC) patients is time-intensive and prone to inter/intra-observer variability. Therefore, we developed a deep-learning-based model to auto-contour liver segments and spleen on contrast-enhanced CT (CECT) images. We trained two models using 3d patch-based attention U-Net ([Formula: see text] and 3d full resolution of nnU-Net ([Formula: see text] to determine the best architecture ([Formula: see text].
View Article and Find Full Text PDFObjectives: The aim of this study was to investigate the prognostic value of 3-dimensional minimal ablative margin (MAM) quantified by intraprocedural versus initial follow-up computed tomography (CT) in predicting local tumor progression (LTP) after colorectal liver metastasis (CLM) thermal ablation.
Materials And Methods: This single-institution, patient-clustered, tumor-based retrospective study included patients undergoing microwave and radiofrequency ablation between 2016 and 2021. Patients without intraprocedural and initial follow-up contrast-enhanced CT, residual tumors, or with follow-up less than 1 year without LTP were excluded.