Publications by authors named "Caleb M Cardon"

Pyruvate constitutes a critical branch point in cellular carbon metabolism. We have identified two proteins, Mpc1 and Mpc2, as essential for mitochondrial pyruvate transport in yeast, Drosophila, and humans. Mpc1 and Mpc2 associate to form an ~150-kilodalton complex in the inner mitochondrial membrane.

View Article and Find Full Text PDF

In Saccharomyces cerevisiae, phosphorylation of Ugp1 by either of the yeast PASK family protein kinases (yPASK), Psk1 or Psk2, directs this metabolic enzyme to deliver glucose to the periphery for synthesis of the cell wall. However, we isolated PSK1 and PSK2 in a high-copy suppressor screen of a temperature-sensitive mutant of target of rapamycin 2 (TOR2). Posttranslational activation of yPASK, either by cell integrity stress or by growth on nonfermentative carbon sources, also suppressed the growth defect resulting from tor2 mutation.

View Article and Find Full Text PDF

Recent data suggests that PAS kinase acts as a signal integrator to adjust metabolic behavior in response to nutrient conditions. Specifically, PAS kinase controls the partitioning of nutrient resources between the myriad of possible fates. In this capacity, PAS kinase elicits a pro-growth program, which includes both signaling and metabolic control, both in yeast and in mammals.

View Article and Find Full Text PDF

The metabolic syndrome, a complex set of phenotypes typically associated with obesity and diabetes, is an increasing threat to global public health. Fundamentally, the metabolic syndrome is caused by a failure to properly sense and respond to cellular metabolic cues. We studied the role of the cellular metabolic sensor PAS kinase (PASK) in the pathogenesis of metabolic disease by using PASK(-/-) mice.

View Article and Find Full Text PDF