The discovery of subtypes is pivotal for disease diagnosis and targeted therapy, considering the diverse responses of different cells or patients to specific treatments. Exploring the heterogeneity within disease or cell states provides insights into disease progression mechanisms and cell differentiation. The advent of high-throughput technologies has enabled the generation and analysis of various molecular data types, such as single-cell RNA-seq, proteomic, and imaging datasets, at large scales.
View Article and Find Full Text PDFFine needle aspiration (FNA) biopsy of thyroid nodules is a safe, cost-effective, and accurate diagnostic method for detecting thyroid cancer. However, about 10% of initial FNA biopsy samples from patients are non-diagnostic and require repeated FNA, which delays the diagnosis and appropriate care. On-site evaluation of the FNA sample can be performed to filter out non-diagnostic FNA samples.
View Article and Find Full Text PDFQuantitative studies of cellular morphodynamics rely on accurate cell segmentation in live cell images. However, fluorescence and phase contrast imaging hinder accurate edge localization. To address this challenge, we developed MARS-Net, a deep learning model integrating ImageNet-pretrained VGG19 encoder and U-Net decoder trained on the datasets from multiple types of microscopy images.
View Article and Find Full Text PDF