Flavonoids comprise a group of natural compounds with diverse bioactivities; however, their low water solubility and limited bioavailability often impede their potential health benefits for humans. In this study, five derivatives, namely 2',5'-dihydroxyflavanone (1), 2'-dihydroxyflavanone-5'-O-4″-O-methyl-β-d-glucoside (2), 2'-dihydroxyflavanone-6-O-4″-O-methyl-β-d-glucoside (3), 2'-dihydroxyflavanone-3'-O-4″-O-methyl-β-d-glucoside (4) and hydroxyflavanone-2'-O-4″-O-methyl-β-d-glucoside (5), were biosynthesized from 2'-hydroxyflavanone through microbial transformation using Beauveria bassiana ATCC 7159. Product 1 was identified as a known compound while 2-5 were structurally characterized as new structures through extensive 1D and 2D NMR analysis.
View Article and Find Full Text PDFPolyphenolic compounds (such as quercetin and resveratrol) possess potential medicinal values due to their various bioactivities, but poor water solubility hinders their health benefits to humankind. Glycosylation is a well-known post-modification method to biosynthesize natural product glycosides with improved hydrophilicity. Glycosylation has profound effects on decreasing toxicity, increasing bioavailability and stability, together with changing bioactivity of polyphenolic compounds.
View Article and Find Full Text PDFFitoterapia
September 2022
Four new 2'-hydroxyflavone glycosides, namely hydroxyflavone-2'-O-β-D-glucuronide (1), hydroxyflavone-2'-O-α-L-rhamnoside (2), hydroxyflavone-2'-O-β-D-glucoside (3), and hydroxyflavone-2'-O-4″-O-methyl-β-D-glucoside (4), were biosynthesized through microbial glycosylation using Streptomyces coeruleorubidus NRRL B-2569, Streptomyces toxytricini NRRL 15443, Escherichia coli BL21(DE3)/pWZ8, and Beauveria bassiana ATCC 7159, respectively. Compounds 1-4 were structurally characterized through extensive analysis of 1D and 2D NMR spectroscopic data. The water solubility of glycosylated products 1-4 were enhanced by 7 to 15 times compared to the substrate 2'-hydroxyflavone.
View Article and Find Full Text PDFGlycosylation is an effective way to increase the polarity of natural products. UDP-glucuronyltransferases (UGTs) are commonly observed and extensively studied in phase II drug metabolism. However, UGTs in microorganisms are not well studied, which hampered the utilization of this type of enzyme in microbial glucuronidation of natural products.
View Article and Find Full Text PDFGlycosylation is an effective way to improve the water solubility of natural products. In this work, a novel glycosyltransferase gene (BbGT) was discovered from Beauveria bassiana ATCC 7159 and heterologously expressed in Escherichia coli. The purified enzyme was functionally characterized through in vitro enzymatic reactions as a UDP-glucosyltransferase, converting quercetin to five monoglucosylated and one diglucosylated products.
View Article and Find Full Text PDF