Background: Biological sex plays an integral role in the immune response to various pathogens. The underlying basis for these sex differences is still not well defined. Here, we show that Coxsackievirus B3 (CVB3) induces a viral-specific CD4+ T cell response that can protect female mice from mortality.
View Article and Find Full Text PDFBiological sex plays an integral role in the immune response to various pathogens. The underlying basis for these sex differences is still not well defined. Here, we show that Coxsackievirus B3 (CVB3) induces a viral-specific CD4 T cell response that can protect female mice from mortality.
View Article and Find Full Text PDFSex is a significant contributor to the outcome of human infections. Males are frequently more susceptible to viral, bacterial, and fungal infections, often attributed to weaker immune responses. In contrast, a heightened immune response in females enables better pathogen elimination but leaves females more predisposed to autoimmune diseases.
View Article and Find Full Text PDFEnteroviruses initiate infection in the gastrointestinal tract, and sex is often a biological variable that impacts pathogenesis. Previous data suggest that sex hormones can influence the intestinal replication of Coxsackievirus B3 (CVB3), an enterovirus in the family. However, the specific sex hormone(s) that regulates intestinal CVB3 replication is poorly understood.
View Article and Find Full Text PDFAutoantibodies can result from excessive T follicular helper (Tfh) cell activity, whereas T follicular regulatory (Tfr) cells negatively regulate autoantibody production. IL-2 knockout (KO) mice on the BALB/c background have elevated Tfh responses, produce autoantibodies, and develop lethal autoimmunity. We analyzed Tfh and Tfr cells in IL-2 KO mice on the C57BL/6 (B6) genetic background.
View Article and Find Full Text PDF