Mechanisms that govern transcriptional regulation of inflammation in atherosclerosis remain largely unknown. Here, we identify the nuclear transcription factor c-Myb as an important mediator of atherosclerotic disease in mice. Atherosclerosis-prone animals fed a diet high in cholesterol exhibit increased levels of c-Myb in the bone marrow.
View Article and Find Full Text PDFResident macrophages densely populate the normal arterial wall, yet their origins and the mechanisms that sustain them are poorly understood. Here we use gene-expression profiling to show that arterial macrophages constitute a distinct population among macrophages. Using multiple fate-mapping approaches, we show that arterial macrophages arise embryonically from CX3CR1(+) precursors and postnatally from bone marrow-derived monocytes that colonize the tissue immediately after birth.
View Article and Find Full Text PDFDuring the inflammatory response that drives atherogenesis, macrophages accumulate progressively in the expanding arterial wall. The observation that circulating monocytes give rise to lesional macrophages has reinforced the concept that monocyte infiltration dictates macrophage buildup. Recent work has indicated, however, that macrophage accumulation does not depend on monocyte recruitment in some inflammatory contexts.
View Article and Find Full Text PDFBackground: Cigarette smoking is the main risk factor for the development of chronic obstructive pulmonary disease (COPD), a major cause of morbidity and mortality worldwide. Despite this, the cellular and molecular mechanisms that contribute to COPD pathogenesis are still poorly understood.
Methodology And Principal Findings: The objective of this study was to assess IL-1 α and β expression in COPD patients and to investigate their respective roles in perpetuating cigarette smoke-induced inflammation.
Background: Chronic obstructive pulmonary disease is a progressive lung disease that is punctuated by periods of exacerbations (worsening of symptoms) that are attributable to viral infections. While rhinoviruses are most commonly isolated viruses during episodes of exacerbation, influenza viruses have the potential to become even more problematic with the increased likelihood of an epidemic.
Methodology And Principal Findings: This study examined the impact of current and potential pharmacological targets namely the systemic corticosteroid dexamethasone and the peroxisome proliferator-activated receptor-gamma agonist pioglitazone on the outcome of infection in smoke-exposed mice.
Influenza virus infection is a leading cause of death and disability throughout the world. Influenza-infected hosts are vulnerable to secondary bacterial infection, however, and an ensuing bacterial pneumonia is actually the predominant cause of influenza-attributed deaths during pandemics. A number of mechanisms have been proposed by which influenza may predispose to superinfection with an unrelated or heterologous pathogen, but the subsequent interaction between the host, virus, and bacteria remains an understudied area.
View Article and Find Full Text PDFRationale: The pathogenesis of chronic obstructive pulmonary disease is associated with acute episodes of bacterial exacerbations. The most commonly isolated bacteria during episodes of exacerbation is nontypeable Haemophilus influenzae (NTHI).
Objectives: In this study, we investigated the in vivo consequences of cigarette smoke exposure on the inflammatory response to an NTHI challenge.
Although its direct effects cannot be discounted, tobacco's effects on the immune system have been proposed to play a key role in mediating its deleterious health impact. Studies in rats using high levels of smoke exposure have suggested that tobacco smoke exhausts cellular signal transduction cascades, making lymphocytes unresponsive to stimulation. In the present study, we show that purified B or T cells, and total lymphocytes from the lungs, lymph nodes and spleens of smoke-exposed mice fluxed calcium, proliferated, and secreted immunoglobulin or IFN-gamma similarly to control mice when stimulated with ligands including anti-IgM, and anti-CD3.
View Article and Find Full Text PDFWound healing is a complex sequence of cellular and molecular processes that involves multiple cell types and biochemical mediators. Several growth factors have been identified that regulate tissue repair, including the neurotrophin nerve growth factor (NGF). As non-adenine based purines (NABPs) are known to promote cell proliferation and the release of growth factors, we investigated whether NABPs had an effect on wound healing.
View Article and Find Full Text PDFThe objective of this study was to investigate the impact of cigarette smoke on innate antiviral defense mechanisms; specifically, we examined the effects of cigarette smoke on the induction of type I interferon (IFN). We observed a dose-dependent decrease in the ability of human lung fibroblast and epithelial cells to elicit an antiviral response against a viral double-strand RNA (dsRNA) mimic, polyI:C, in the presence of cigarette smoke-conditioned medium (SCM). Mechanistically, SCM decreases the expression of IFN-stimulated gene 15 (ISG15) and IFN regulatory factor-7 (IRF-7) transcripts and suppresses the nuclear translocation of key transcription factors, nuclear factor-kappaB (NF-kappaB) and IRF-3, after polyI:C stimulation.
View Article and Find Full Text PDFAm J Respir Cell Mol Biol
February 2008
Alveolar macrophages (aMs) play a central role in respiratory host defense by sensing microbial antigens and initiating immune-inflammatory responses early in the course of an infection. The purpose of this study was to investigate the effect of cigarette smoke exposure on aMs after stimulation of innate pattern recognition receptors (PRRs) in a murine model. To accomplish this, C57BL/6 mice were exposed for 8 weeks using two models of cigarette smoke exposure, nose-only or whole-body exposure, and aMs isolated from the bronchoalveolar lavage.
View Article and Find Full Text PDFContrib Microbiol
November 2007
Modeling acute exacerbations of chronic obstructive pulmonary disease (AECOPD) in animals has proven challenging due to the clinical and pathological complexity of the underlying disease. This has hindered the progress in understanding the cellular and molecular mechanisms that lie beneath AECOPD. In this chapter, we will address modeling possibilities of AECOPD that may be drawn from the current knowledge of factors that cause exacerbations.
View Article and Find Full Text PDFIn this study, we investigated the impact of cigarette smoke on tumor immune surveillance and its consequences to lung tumor burden in a murine lung metastasis model. Cigarette smoke exposure significantly increased the numbers of lung metastases following B16-MO5 melanoma challenge. This effect was reversible; we observed significantly fewer tumor nodules following smoking cessation.
View Article and Find Full Text PDF