Publications by authors named "Calapai A"

Research on the psychological and physiological well-being of captive animals has focused on investigating different types of social and structural enrichment. Consequently, cognitive enrichment has been understudied, despite the promising external validity, comparability, and applicability. As we aim to fill this gap, we developed an interactive, multiple-choice interface for cage-mounted touchscreen devices that rhesus monkeys () can freely interact with, from within their home enclosure at the Cognitive Neuroscience Laboratory of the German Primate Center.

View Article and Find Full Text PDF

Introduction: Cognitive flexibility is the ability of an individual to make behavioral adjustments in response to internal and/or external changes. While it has been reported in a wide variety of species, established paradigms to assess cognitive flexibility vary between humans and non-human animals, making systematic comparisons difficult to interpret.

Methods: We developed a computer-based paradigm to assess cognitive flexibility in humans and non-human primates.

View Article and Find Full Text PDF

Electrophysiological studies with behaving nonhuman primates often require the separation of animals from their social group as well as partial movement restraint to perform well-controlled experiments. When the research goal per se does not mandate constraining the animals' movements, there are often still experimental needs imposed by tethered data acquisition. Recent technological advances meanwhile allow wireless neurophysiological recordings at high band-width in limited-size enclosures.

View Article and Find Full Text PDF

In recent years, the utility and efficiency of automated procedures for cognitive assessment in psychology and neuroscience have been demonstrated in non-human primates (NHP). This approach mimics conventional shaping principles of breaking down a final desired behavior into smaller components that can be trained in a staircase manner. When combined with home-cage-based approaches, this could lead to a reduction in human workload, enhancement in data quality, and improvement in animal welfare.

View Article and Find Full Text PDF

Devising new and more efficient protocols to analyze the phenotypes of non-human primates, as well as their complex nervous systems, is rapidly becoming of paramount importance. This is because with genome-editing techniques, recently adopted to non-human primates, new animal models for fundamental and translational research have been established. One aspect in particular, namely cognitive hearing, has been difficult to assess compared to visual cognition.

View Article and Find Full Text PDF

Small ballistic eye movements, so called microsaccades, occur even while foveating an object. Previous studies using covert attention tasks have shown that shortly after a symbolic spatial cue, specifying a behaviorally relevant location, microsaccades tend to be directed toward the cued location. This suggests that microsaccades can serve as an index for the covert orientation of spatial attention.

View Article and Find Full Text PDF

Teaching nonhuman primates the complex cognitive behavioral tasks that are central to cognitive neuroscience research is an essential and challenging endeavor. It is crucial for the scientific success that the animals learn to interpret the often complex task rules and reliably and enduringly act accordingly. To achieve consistent behavior and comparable learning histories across animals, it is desirable to standardize training protocols.

View Article and Find Full Text PDF

In neurophysiological studies with awake non-human primates (NHP), it is typically necessary to train the animals over a prolonged period of time on a behavioral paradigm before the actual data collection takes place. Rhesus monkeys (Macaca mulatta) are the most widely used primate animal models in system neuroscience. Inspired by existing joystick- or touch-screen-based systems designed for a variety of monkey species, we built and successfully employed a stand-alone cage-based training and testing system for rhesus monkeys (eXperimental Behavioral Intrument, XBI).

View Article and Find Full Text PDF