Familial hypertrophic cardiomyopathy (FHC) is a heritable form of cardiac hypertrophy caused by single-point mutations in genes encoding sarcomeric proteins including ventricular myosin regulatory light chain (RLC). FHC often leads to malignant outcomes and sudden cardiac death. The FHC mutations are believed to alter the kinetics of the interaction between actin and myosin resulting in inefficient energy utilization and compromised function of the heart.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
August 2011
We present herein a silver nanostructure-assisted sensing platform which consists of a combined structure of Ag nanowire (NW) and nanodot (ND) array. Highly enhanced fluorescence from fluorophore is attributed to a strongly coupled optical near-field interaction between proximately located Ag NW and NDs. We obtained enhanced fluorescence intensity with up to 140 folds, as contrasted from background intensity, reaching a theoretical maximum value.
View Article and Find Full Text PDFFluorescence intensity changes were investigated theoretically and experimentally using self-assembled colloidal structures on silver semitransparent mirrors. Using a simplified quasi-static model and finite element method, we demonstrate that near-field interactions of metallic nanostructures with a continuous metallic surface create conditions that produce enormously enhanced surface plasmon resonances. The results were used to explain the observed enhancements and determine the optimal conditions for the experiment.
View Article and Find Full Text PDFCytoskeleton (Hoboken)
June 2010
During muscle contraction a myosin cross-bridge imparts periodic force impulses to actin. It is possible to visualize those impulses by observing a few molecules of actin or myosin. We have followed the time course of orientation change of a few actin molecules during isometric contraction by measuring parallel polarized intensity of its fluorescence.
View Article and Find Full Text PDFA single-point mutation in the gene encoding the ventricular myosin regulatory light chain (RLC) is sufficient to cause familial hypertrophic cardiomyopathy (FHC). Most likely, the underlying cause of this disease is an inefficient energy utilization by the mutated cardiac muscle. We set out to devise a simple method to characterize two FHC phenotypes caused by the R58Q and D166V mutations in RLC.
View Article and Find Full Text PDFFamilial hypertrophic cardiomyopathy (FHC) is a serious heart disease that often leads to a sudden cardiac death of young athletes. It is believed that the alteration of the kinetics of interaction between actin and myosin causes FHC by making the heart to pump blood inefficiently. We set out to check this hypothesis ex vivo.
View Article and Find Full Text PDFOne of the sarcomeric mutations associated with a malignant phenotype of familial hypertrophic cardiomyopathy (FHC) is the D166V point mutation in the ventricular myosin regulatory light chain (RLC) encoded by the MYL2 gene. In this report we show that the rates of myosin cross-bridge attachment and dissociation are significantly different in isometrically contracting cardiac myofibrils from right ventricles of transgenic (Tg)-D166V and Tg-WT mice. We have derived the myosin cross-bridge kinetic rates by tracking the orientation of a fluorescently labeled single actin molecule.
View Article and Find Full Text PDFConcentration of molecules within the tips of nanopipettes when applying a DC voltage is herein investigated using finite-element simulations. The ion concentrations and fluxes due to diffusion, electro-migration, and electro-osmotic flow, and the electric potential are determined by the simultaneous solution of the Nernst-Planck, Poisson, and Navier-Stokes equations within the water solution containing sodium and chloride ions and negatively charged molecules. The electric potential within the pipette glass wall is at the same time determined by the Poisson equation together with appropriate boundary conditions and accounts for a field effect through the wall.
View Article and Find Full Text PDFFluorescence Correlation Spectroscopy (FCS) demands a high rate of photon detection per molecule, low background, and large fluctuations of fluorescence associated with translational motion. The new approach presented here, Surface Plasmon Assisted Microscope (SPAM), meets these requirements by drastically limiting the observation volume. In this method, the observational layer is made so thin that fluctuations are mostly due to the axial motion of molecules.
View Article and Find Full Text PDFRecent advances in detector technology make it possible to achieve single molecule detection (SMD) in a cell. SMD avoids complications associated with averaging signals from large assemblies and with diluting and disorganizing proteins. However, it requires that cells be illuminated with an intense laser beam, which causes photobleaching and cell damage.
View Article and Find Full Text PDFStudying single molecules in a cell has the essential advantage that kinetic information is not averaged out. However, since fluorescence is faint, such studies require that the sample be illuminated with the intense light beam. This causes photodamage of labeled proteins and rapid photobleaching of the fluorophores.
View Article and Find Full Text PDFWe show that the strongly depolarized light scattering from noble metal particles is a result of interference of two surface plasmon resonances on the same particle. The maximum depolarization occurs between two resonances. Under favorable conditions the anisotropy of the scattering light can be much lower than what is possible for dielectric particles.
View Article and Find Full Text PDFJ Opt Soc Am A Opt Image Sci Vis
September 2007
A theory for focused optical beams at planar structures is described. It is an extension of a previous theory based on summation of plane waves. The focused beam is obtained by an imaginary shift in the position vector of the plane waves.
View Article and Find Full Text PDFWe describe the positive effect of surface plasmon-coupled fluorescence emission (SPCE) on the detection of a signal from a surface immunoassay in highly absorbing or/and scattering samples. A model immunoassay using fluorescently labeled anti-rabbit antibodies that bind to rabbit immunoglobulin on a silver surface was performed, and the signal was detected in the presence of various highly absorbing and/or scattering solutions or suspensions, such as hemoglobin solution, plastic beads, and red blood cells. The results showed that a highly absorbing solution consisting of small molecules (dye, hemoglobin) attenuates the SPCE signal approximately 2-3-fold.
View Article and Find Full Text PDFBiosens Bioelectron
June 2007
A novel type of bioelectronic region ion sensitive field effect transistor (RISFET) nanosensor was constructed and demonstrated on two different sensor chips that could measure glucose with good linearity in the range of 0-0.6mM and 0-0.3mM with a limit of detection of 0.
View Article and Find Full Text PDFStudy of dynamics of single molecules by Fluorescence Correlation Spectroscopy (FCS) requires that the rate of photon detection per molecule be high, that the background be low, and that there be a large change in fluorescent signal associated with change in a position of a molecule. FCS applied to microscopic Surface Plasmon Coupled Emission (SPCE) suggests a powerful method to meet those requirements. In this method, the observational volume is made shallow by placing a sample on a thin metal film and illuminating it with the laser beam at Surface Plasmon Resonance (SPR) angle through high numerical aperture objective.
View Article and Find Full Text PDFA theoretical approach is used to investigate the coupling of surface plasmon-coupled emission to Fabry-Perot resonance in the sample layer. Quantities investigated are emission angles, polarization, power levels, and fluorescence lifetimes. The results are compared to experimental findings.
View Article and Find Full Text PDFMuscle contraction results from interactions between actin and myosin cross-bridges. Dynamics of this interaction may be quite different in contracting muscle than in vitro because of the molecular crowding. In addition, each cross-bridge of contracting muscle is in a different stage of its mechanochemical cycle, and so temporal measurements are time averages.
View Article and Find Full Text PDFWe report theoretical predictions and experimental observations of the reduced detection volume with the use of surface-plasmon-coupled emission (SPCE). The effective fluorescence volume (detection volume) in SPCE experiments depends on two near-field factors: the depth of evanescent wave excitation and a distance-dependent coupling of excited fluorophores to the surface plasmons. With direct excitation of the sample (reverse Kretschmann excitation) the detection volume is restricted only by the distance-dependent coupling of the excitation to the surface plasmons.
View Article and Find Full Text PDFThe circadian clock of Drosophila melanogaster and its tendency to adjust to the day-night light cycle is simulated by deterministic and stochastic methods. The robustness of the locking to the light-cycle with respect to molecular noise is studied. It is found that within the model studied, the molecular noise in the stochastic simulation erases the finer injection-locking structures, stronger injection signals are needed and the locking has the character of prolonged locked time intervals with cycle slips in between.
View Article and Find Full Text PDFWe measured a directional surface plasmon-coupled emission (SPCE) induced by a two-photon absorption. A 60 nm thick layer of poly(vinyl alcohol) film doped with rhodamine 123 was deposited on a silvered (50 nm Ag) glass slide, which was attached to a hemicylindrical glass prism. The 820 nm excitation from a femtosecond Ti:Sapphire laser was used either in reverse Kretschmann or Kretschmann configuration.
View Article and Find Full Text PDFWe have trapped single protein molecules of R-phycoerythrin in an aqueous solution by an alternating electric field. A radio frequency voltage is applied to sharp nanoelectrodes and hence produces a strong electric field gradient. The resulting dielectrophoretic forces attract freely diffusing protein molecules.
View Article and Find Full Text PDFA theoretical approach to surface plasmon-coupled emission (SPCE) from planar structures is developed. It is used for simulations. The results are compared to experimental findings.
View Article and Find Full Text PDFPhys Rev Lett
September 2002
We propose a scheme of optical trapping of fluorescent molecules, based on the strongly enhanced optical field due to surface plasmon resonances at laser illuminated metal tips or particles. A semiclassical approach is compared to a quantum-mechanical one. Attractive as well as repulsive forces are possible depending on the wavelength of the optical field.
View Article and Find Full Text PDF