Publications by authors named "Caizhi Xu"

Elastic strain has the potential for a controlled manipulation of the band gap and spin-polarized Dirac states of topological materials, which can lead to pseudomagnetic field effects, helical flat bands, and topological phase transitions. However, practical realization of these exotic phenomena is challenging and yet to be achieved. Here we show that the Dirac surface states of the topological insulator BiSe can be reversibly tuned by an externally applied elastic strain.

View Article and Find Full Text PDF

Two-dimensional topological insulators show great promise for spintronic applications. Much attention has been placed on single atomic or molecular layers, such as bismuthene. The selections of such materials are, however, limited.

View Article and Find Full Text PDF

Three-dimensional (3D) topological Dirac semimetals (TDSs) are rare but important as a versatile platform for exploring exotic electronic properties and topological phase transitions. A quintessential feature of TDSs is 3D Dirac fermions associated with bulk electronic states near the Fermi level. Using angle-resolved photoemission spectroscopy, we have observed such bulk Dirac cones in epitaxially grown α-Sn films on InSb(111), the first such TDS system realized in an elemental form.

View Article and Find Full Text PDF

We report on the fabrication of a two-dimensional topological insulator Bi(111) bilayer on Sb nanofilms via a sequential molecular beam epitaxy growth technique. Our angle-resolved photoemission measurements demonstrate the evolution of the electronic band structure of the heterostructure as a function of the film thickness and reveal the existence of a two-dimensional spinful massless electron gas within the top Bi bilayer. Interestingly, our first-principles calculation extrapolating the observed band structure shows that, by tuning down the thickness of the supporting Sb films into the quantum dimension regime, a pair of isolated topological edge states emerges in a partial energy gap at 0.

View Article and Find Full Text PDF