Publications by authors named "Caizheng Wang"

This study analyzes the impact mechanical response of sandwich structures with foam and wood cores through experimental and numerical methods. The aim is to determine whether a sustainable core material, such as cork wood, can serve as a reliable alternative to the commonly used Polystyrene (PS) foam core in sandwich structures. Impact experiments were conducted at varying energy levels using an INSTRON CEAST 9350 drop tower, demonstrating the superiority of sandwich structures compared to single-material alternatives.

View Article and Find Full Text PDF

It is critical and challenging to develop highly active and low cost bifunctional electrocatalysts for the hydrogen/oxygen evolution reaction (HER/OER) in water electrolysis. Herein, we propose cerium-vanadium-based hollow nanopillar arrays supported on nickel foam (CeV-HNA/NF) as bifunctional HER/OER electrocatalysts, which are prepared by etching the V metal-organic framework with Ce salt and then pyrolyzing. Etching results in multidimensional optimizations of electrocatalysts, covering substantial oxygen vacancies, optimized electronic configurations, and an open-type structure of hollow nanopillar arrays, which contribute to accelerating the charge transfer rate, regulating the adsorption energy of H/O-containing reaction intermediates, and fully exposing the active sites.

View Article and Find Full Text PDF

Lead-free perovskites are considered to be candidates for next-generation photodetectors, because of their excellent charge carrier transport properties and low toxicity. However, their application in integrated circuits is hindered by their inadequate performance and size restrictions. To aim at the development of lead-free perovskite-integrated optoelectronic devices, a CsAgI/silicon (CAI/Si) heterojunction is presented in this work by using a spatial confinement growth method, where the in-plane growth of CAI microbelts with high-quality single-crystal characteristics is primarily dependent on the concentration of surrounding precursor solution.

View Article and Find Full Text PDF

Breast cancer is one of the leading causes of cancer-related death in women. Currently, the treatment of breast cancer is limited by the lack of effectively targeted therapy and patients often suffer from higher severity, metastasis, and resistance. Extracellular vesicles (EVs) consist of lipid bilayers that encapsulate a complex cargo, including proteins, nucleic acids, and metabolites.

View Article and Find Full Text PDF

Hepatocellular carcinoma (HCC), one of the most prevalent cancers, with a high mortality rate worldwide, seriously impairs patient health. The lack of accurate targets impedes the early screening and diagnosis of HCC and is associated with a poor response to routine therapies. Extracellular vesicles (EVs), comprising exosomes, microvesicles, and apoptotic bodies, are lipid bilayer membrane-derived nanometer-sized vesicles.

View Article and Find Full Text PDF

Inner Mongolian cheese is a traditional dairy product in China. It is produced without rennet, using naturally acidified milk that is simmered to achieve whey separation. In order to analyse the impact of simmering on the microbial community structure, high-throughput sequencing was performed to obtain bacterial 16S rRNA sequences from cheeses from the Ordos (ES), Ulanqab (WS), Horqin (KS) and Xilingol (XS) grasslands of Inner Mongolia.

View Article and Find Full Text PDF

High salinity is an effective measure to preserve kelp, but salted kelp can still deteriorate after long-term preservation. In order to clarify the key conditions and microbial behavior of salted kelp preservation, 10% (S10), 20% (S20), and 30% (S30) salt concentrations were evaluated at 25 °C (T25) and 4 °C (T4). After 30 days storage, these salted kelps showed different states including rot (T25S10), softening (T25S20), and undamaged (other samples).

View Article and Find Full Text PDF