Group-based sparse representation (GSR) uses image nonlocal self-similarity (NSS) prior to grouping similar image patches, and then performs sparse representation. However, the traditional GSR model restores the image by training degraded images, which leads to the inevitable over-fitting of the data in the training model, resulting in poor image restoration results. In this paper, we propose a new hybrid sparse representation model (HSR) for image restoration.
View Article and Find Full Text PDF