IEEE Trans Neural Netw Learn Syst
March 2025
Many problems in science and engineering can be mathematically modeled using partial differential equations (PDEs), which are essential for fields like computational fluid dynamics (CFD), molecular dynamics, and dynamical systems. Although traditional numerical methods like the finite difference/element method are widely used, their computational inefficiency, due to the large number of iterations required, has long been a challenge. Recently, deep learning (DL) has emerged as a promising alternative for solving PDEs, offering new paradigms beyond conventional methods.
View Article and Find Full Text PDFMedical images are crucial in clinical practice, providing essential information for patient assessment and treatment planning. However, manual extraction of information from images is both time-consuming and prone to errors. The emergence of U-Net addresses this challenge by automating the segmentation of anatomical structures and pathological lesions in medical images, thereby significantly enhancing the accuracy of image interpretation and diagnosis.
View Article and Find Full Text PDF