Publications by authors named "Caitriona Creely"

Objectives: Assess the impact of the Health Research Board (HRB) Ireland guidance on the uptake of core outcome sets (COSs).

Study Design And Setting: (1) Information on COS use, searching of the Core Outcome Measures in Effectiveness Trials (COMET) database, and rationale for outcome selection were extracted from HRB funding applications (2) COMET was searched for relevant COS availability at the time of application or developed since (3) principal investigator choices were explored through online surveys.

Results: Out of 187 funding applications, 44% (n = 82) searched the COMET database, and 13% (n = 11) of those found a relevant COS to inform their outcomes.

View Article and Find Full Text PDF

The transient species formed following excitation of fac-[Re(CO)(3)(F(2)dppz)(py)](+) (F(2)dppz = 11,12-difluorodipyrido[3,2-a:2',3'-c]phenazine) bound to double-stranded polynucleotides [poly(dA-dT)](2) or [poly(dG-dC)](2) have been studied by transient visible and infra-red spectroscopy in both the picosecond and nanosecond time domains. The latter technique has been used to monitor both the metal complex and the DNA by monitoring the regions 1900-2100 and 1500-1750 cm(-1) respectively. These data provide direct evidence for electron transfer from guanine to the excited state of the metal complex, which proceeds both on a sub-picosecond time scale and with a lifetime of 35 ps, possibly due to the involvement of two excited states.

View Article and Find Full Text PDF

Transient species formed by photoexcitation (400 nm) of [Ru(dppz)(tap)2]2+ (1) (dppz = dipyrido[3,2-a:2',3'-c]phenazine; tap=1,4,5,8-tetraazaphenanthrene) in aqueous solution and when intercalated into a double-stranded synthetic polynucleotide, [poly(dG-dC)]2, have been observed on a picosecond timescale by both visible transient absorption (allowing monitoring of the metal complex intermediates) and transient infrared (IR) absorption spectroscopy (allowing direct study of the DNA nucleobases). By contrast with its behavior when free in aqueous solution, excitation of 1 when bound to [poly(dG-dC)]2 causes a strong increase in absorbance at 515 nm due to formation of the reduced complex [Ru(dppz)(tap)2]+ (rate constant=(2.0+/-0.

View Article and Find Full Text PDF

The photophysical properties of [Re(CO)(3)(dppz)(py)](+) (dppz = dipyrido-[3,2-a:2',3'-c] phenazine) and its 11,12 substituted derivatives [Re(CO)(3)(dppzMe(2))(py)](+) and [Re(CO)(3)(dppzF(2))(py)](+) have been examined in organic and aqueous environments using phosphorescence and picosecond transient visible and infrared absorption spectroscopic methods. The roles of the intraligand IL(pi-pi*) and metal-to-ligand charge transfer MLCT(phz) excited states are evaluated and used to explain the major effect of difluoro-substitution, which is particularly remarkable in water, where the excited state of [Re(CO)(3)(dppzF(2))(py)](+) is strongly quenched.

View Article and Find Full Text PDF

Raman imaging can yield spatially resolved biochemical information from living cells. To date there have been no Raman images published of cells in suspension because of the problem of immobilizing them suitably to acquire space-resolved spectra. In this paper in order to overcome this problem the use of holographic optical tweezers is proposed and implemented, and data is shown for spatially resolved Raman spectroscopy of a live cell in suspension.

View Article and Find Full Text PDF

Living cells survive environmentally stressful conditions by initiating a stress response. We monitored changes in the Raman spectra of optically trapped Saccharomyces cerevisiae yeast cell under normal, heat-treated, and hyperosmotic stress conditions. It is shown that when glucose was used to exert hyperosmotic stress, two chemical substances-glycerol and ethanol-can be monitored in real time in a single cell.

View Article and Find Full Text PDF

The photophysical properties of fac-[Re(CO)3(dppz)(py)]+ (1, where dppz = dipyrido[3,2-a: 2',3'-c]phenazine) in CH3CN have been investigated using a series of complementary techniques including visible and infrared transient absorption and resonance Raman spectroscopy on the picosecond and nanosecond timescales. The results confirm previous reports that the lowest-lying emissive state in 1 is a triplet intra-ligand (3IL) state localised on the dppz ligand and have provided detailed information on the dynamics of 1 upon photoexcitation, including the relative energies of the excited state species encountered and the electronic distribution within these. If the dppz ligand is viewed in terms of phenanthroline (phen) and phenazine (phz) moieties, the emissive state is probably more accurately described as a 3 pi-->pi *(phz) IL state.

View Article and Find Full Text PDF