Publications by authors named "Caitlyn Thomas"

Infections by Staphylococcus aureus have been treated historically with β-lactam antibiotics. However, these antibiotics have become obsolete in methicillin-resistant S. aureus by acquisition of the bla and mec operons.

View Article and Find Full Text PDF

The worldwide spread of the metallo-β-lactamases (MBL), especially New Delhi metallo-β-lactamase-1 (NDM-1), is threatening the efficacy of β-lactams, which are the most potent and prescribed class of antibiotics in the clinic. Currently, FDA-approved MBL inhibitors are lacking in the clinic even though many strategies have been used in inhibitor development, including quantitative high-throughput screening (qHTS), fragment-based drug discovery (FBDD), and molecular docking. Herein, a machine learning-based prediction tool is described, which was generated using results from HTS of a large chemical library and previously published inhibition data.

View Article and Find Full Text PDF

Among the various mechanisms that bacteria use to develop antibiotic resistance, the multiple expression of β-lactamases is particularly problematic, threatening public health and increasing patient mortality rates. Even if a combination therapy-in which a β-lactamase inhibitor is administered together with a β-lactam antibiotic-has proven effective against serine-β-lactamases, there are no currently approved metallo-β-lactamase inhibitors. Herein, we demonstrate that quercetin and its analogs are promising starting points for the further development of safe and effective metallo-β-lactamase inhibitors.

View Article and Find Full Text PDF

β-Lactam antibiotics are among the most frequently prescribed therapeutic agents. A common mechanism of resistance toward β-lactam antibiotics is the production of β-lactamases. These enzymes are capable of hydrolyzing the β-lactam bond, rendering the drug inactive.

View Article and Find Full Text PDF

Metallo-β-lactamases (MBLs) contribute to the resistance of Gram-negative bacteria to carbapenems, last-resort antibiotics at hospital, and MBL inhibitors are urgently needed to preserve these important antibacterial drugs. Here, we describe a series of 1,2,4-triazole-3-thione-based inhibitors displaying an α-amino acid substituent, which amine was mono- or disubstituted by (hetero)aryl groups. Compounds disubstituted by certain nitrogen-containing heterocycles showed submicromolar activities against VIM-type enzymes and strong NDM-1 inhibition ( = 10-30 nM).

View Article and Find Full Text PDF

To identify novel inhibitors of the carbapenemase New Delhi metallo-β-lactamase (NDM) as possible therapeutic compounds, we conducted a high-throughput screen of a 43,358-compound library. One of these compounds, a 2-quinazolinone linked through a diacylhydrazine to a phenyl ring (QDP-1) (IC = 7.9 ± 0.

View Article and Find Full Text PDF

Metallo-β-lactamases (MBLs) are important contributors of Gram-negative bacteria resistance to β-lactam antibiotics. MBLs are highly worrying because of their carbapenemase activity, their rapid spread in major human opportunistic pathogens while no clinically useful inhibitor is available yet. In this context, we are exploring the potential of compounds based on the 1,2,4-triazole-3-thione scaffold as an original ligand of the di-zinc active sites of MBLs, and diversely substituted at its positions 4 and 5.

View Article and Find Full Text PDF
Article Synopsis
  • New Delhi metallo-β-lactamase (NDM) is a significant global threat due to its resistance to critical antibiotics, and new variants like NDM-15 show enhanced resilience to low zinc levels.
  • A novel fluorescent probe has been created to track the metalation state of NDM, significantly increasing fluorescence intensity and allowing for detailed studies of enzyme behavior.
  • This tool aids in understanding how metal ion levels affect NDM's resistance and could help develop new therapies to combat antibiotic resistance.
View Article and Find Full Text PDF

In an effort to probe the biophysical mechanisms of inhibition for ten previously-reported inhibitors of metallo-β-lactamases (MBL) with MBL IMP-1, equilibrium dialysis, metal analyses coupled with atomic absorption spectroscopy (AAS), native state mass spectrometry (native MS), and ultraviolet-visible spectrophotometry (UV-VIS) were used. 6-(1H-tetrazol-5-yl) picolinic acid (1T5PA), ANT431, D/l-captopril, thiorphan, and tiopronin were shown to form IMP-1/Zn(II)/inhibitor ternary complexes, while dipicolinic acid (DPA) and 4-(3-aminophenyl)pyridine-2,6-dicarboxylic acid (3AP-DPA) stripped some metal from the active site of IMP but also formed ternary complexes. DPA and 3AP-DPA stripped less metal from IMP-1 than from VIM-2 but stripped more metal from IMP-1 than from NDM-1.

View Article and Find Full Text PDF

Metallo-β-lactamases (MBLs) are a growing clinical threat because they inactivate nearly all β-lactam-containing antibiotics, and there are no clinically available inhibitors. A significant number of variants have already emerged for each MBL subfamily. To understand the evolution of imipenemase (IMP) genes () and their clinical impact, 20 clinically derived IMP-1 like variants were obtained using site-directed mutagenesis and expressed in a uniform genetic background in strain DH10B.

View Article and Find Full Text PDF

To probe the mechanism of inhibition of several previously-published metallo-β-lactamase (MBL) inhibitors for the clinically-important MBL Verona integron-encoded metallo-β-lactamase 2 (VIM-2), equilibrium dialyses with metal analyses, native state electrospray ionization mass spectrometry (ESI-MS), and UV-Vis spectrophotometry were utilized. The mechanisms of inhibition were analyzed for ethylenediaminetetraacetic acid (EDTA); dipicolinic acid (DPA) and DPA analogs 6-(1H-tetrazol-5-yl)picolinic acid (1T5PA) and 4-(3-aminophenyl)pyridine-2,6-dicarboxylic acid (3AP-DPA); thiol-containing compounds, 2,3-dimercaprol, thiorphan, captopril, and tiopronin; and 5-(pyridine-3-sulfonamido)-1,3-thiazole-4-carboxylic acid (ANT-431). UV-Vis spectroscopy and native-state ESI-MS results showed the formation of ternary complexes between VIM-2 and 1T5PA, ANT-431, thiorphan, captopril, and tiopronin, while a metal stripping mechanism was shown with VIM-2 and EDTA and DPA.

View Article and Find Full Text PDF

Due to the rapid proliferation of antibiotic-resistant pathogenic bacteria, known as carbapenem-resistant enterobacteriaceae, the efficacy of β-lactam antibiotics is threatened. β-lactam antibiotics constitute over 50% of the available antibiotic arsenal. Recent efforts have been focused on developing inhibitors to these enzymes.

View Article and Find Full Text PDF

The fungal natural product aspergillomarasmine A (AMA) has been identified as a noncompetitive inhibitor of New Delhi metallo-β-lactamase-1 (NDM-1) that inhibits by removing Zn from the active-site. The nonselective metal-chelating properties and difficult synthesis and derivatization of AMA have hindered the development of this scaffold into a potent and selective inhibitor of NDM-1. Iminodiacetic acid (IDA) has been identified as the metal-binding pharmacophore (MBP) core of AMA that can be leveraged for inhibitor development.

View Article and Find Full Text PDF

In an effort to facilitate the discovery of new, improved inhibitors of the metallo--lactamases (MBLs), a new, interactive website called MBLinhibitors.com was developed. Despite considerable efforts from the science community, there are no clinical inhibitors of the MBLs, which are now produced by human pathogens.

View Article and Find Full Text PDF

To understand the evolution of Verona integron-encoded metallo-β-lactamase (VIM) genes () and their clinical impact, microbiological, biochemical, and structural studies were conducted. Forty-five clinically derived VIM variants engineered in a uniform background and expressed in afforded increased resistance toward all tested antibiotics; the variants belonging to the VIM-1-like and VIM-4-like families exhibited higher MICs toward five out of six antibiotics than did variants belonging to the widely distributed and clinically important VIM-2-like family. Generally, maximal MIC increases were observed when cephalothin and imipenem were tested.

View Article and Find Full Text PDF