Publications by authors named "Caitlyn R Fields"

The origin of amyloid fibril polymorphs is debated, in part, because few techniques can simultaneously monitor the formation kinetics of multiple amyloid polymorphs. Using a cross-peak specific polarization scheme, ⟨0°,0°,60°,-60°⟩, we resolve 22 previously unseen cross peaks in the 2D IR spectra of amyloid fibrils formed by the human islet amyloid polypeptide (hIAPP). Those cross peaks include a subset assigned to a second fibril polymorph, which forms on a slower time scale.

View Article and Find Full Text PDF

The aggregation of islet amyloid polypeptide (IAPP) is associated with β-cell dysfunction in type 2 diabetes (T2D) in humans. One possible mechanism of toxicity is the interaction of IAPP oligomers with lipid membranes to disrupt the bilayer integrity and/or homeostasis of the cell. Amino acid sequence variations of IAPPs between species can greatly decrease their propensity for aggregation.

View Article and Find Full Text PDF

The aggregation of human islet amyloid polypeptide (hIAPP) into amyloid fibrils involves formation of oligomeric intermediates that are thought to be the cytotoxic species responsible for β-cell dysfunction in type 2 diabetes. hIAPP oligomers permeating or disrupting the cellular membrane may be one mechanism of toxicity and so measuring the structural kinetics of aggregation in the presence of membranes is of much interest. In this study, we use 2D IR spectroscopy and CO isotope labeling to study the secondary structure of the oligomeric intermediates formed in solution and in the presence of phospholipid vesicles at sites L12A13, L16V17, G24A25 and V32G33.

View Article and Find Full Text PDF

We used two-dimensional IR bioimaging to study the structural heterogeneity of formalin-fixed mouse pancreas. Images were generated from the hyperspectral data sets by plotting quantities associated with the amide I vibrational mode, which is created by the backbone carbonyl stretch. Images that measure the fundamental vibrational frequencies, cross peaks, and anharmonic shifts are presented.

View Article and Find Full Text PDF

There is enormous interest in measuring amyloid fibril structures, but most structural studies measure fibril formation using aqueous buffer. Ideally, one would like to measure fibril structure and mechanism under more physiological conditions. Toward this end, we have developed a method for studying amyloid fibril structure in human serum.

View Article and Find Full Text PDF