Publications by authors named "Caitlyn Nguyen-Ngo"

Gestational diabetes mellitus (GDM) and maternal obesity are significant metabolic complications increasingly prevalent in pregnancy. Of major concern, both GDM and maternal obesity can have long-term detrimental impacts on the health of both mother and offspring. Recent research has shown that increased inflammation and oxidative stress are two features central to the pathophysiology of these metabolic conditions.

View Article and Find Full Text PDF
Article Synopsis
  • Gestational diabetes mellitus (GDM) poses serious health risks for both mothers and babies, highlighting the urgent need for effective treatments.
  • The interplay between adipose tissue, the placenta, and fetal growth is crucial, as the placenta controls how nutrients are transferred to the fetus.
  • This review focuses on how factors from adipose tissue influence placental nutrient transporters, suggesting that understanding these interactions could lead to new ways to prevent GDM.
View Article and Find Full Text PDF

Introduction: The world is witnessing a steady rise in the prevalence of gestational diabetes mellitus (GDM), correlated with the current obesity epidemic. Both GDM and obesity negatively impact both the health of women but also that of the next generation. GDM and maternal obesity are associated with increased maternal and fetal inflammation and oxidative stress.

View Article and Find Full Text PDF

Spontaneous preterm birth is the leading cause of neonatal mortality and morbidity globally. Activation of the maternal immune system leads to a downstream cascade of proinflammatory events that culminate in the activation of spontaneous uterine contractions and the rupture of the foetal membranes. Anti-inflammatory agents may be a novel therapeutic approach to prevent inflammation-induced myometrial contractions and premature rupture of foetal membranes.

View Article and Find Full Text PDF

Gestational diabetes mellitus (GDM) affects up to 16% of pregnant women and is associated with significant long-term health detriments for the mother and her offspring. Two central features of GDM are low-grade inflammation and maternal peripheral insulin resistance, therefore therapeutics which target these may be most effective at preventing the development of GDM. Short-chain fatty acids (SCFAs), such as butyrate and propionate, are metabolites produced from the fermentation of dietary fibre by intestinal microbiota.

View Article and Find Full Text PDF

Spontaneous preterm birth is a global health issue affecting up to 20% of pregnancies and leaves a legacy of neurodevelopmental complications. Inflammation has been implicated in a significant proportion of preterm births, where pro-inflammatory insults trigger production of additional pro-inflammatory and pro-labor mediators. Thus, novel therapeutics that can target inflammation may be a novel avenue for preventing preterm birth and improving adverse fetal outcomes.

View Article and Find Full Text PDF

Gestational diabetes mellitus (GDM) is a global health issue, whereby pregnant women are afflicted with carbohydrate intolerance with first onset during pregnancy. GDM is characterized by maternal peripheral insulin resistance, thought to be driven by low-grade maternal inflammation. Nobiletin, a polymethoxylated flavonoid, possesses potent glucose-sensitizing and anti-inflammatory properties; however, its effects in GDM have not been assessed.

View Article and Find Full Text PDF

Preterm birth is a global healthcare challenge. Spontaneous preterm birth (sPTB) is commonly caused by inflammation, yet there are currently no effective therapies available. The Bromodomain and Extra-Terminal motif (BET) proteins, Bromodomain-containing protein (Brd) 2 (Brd2), Brd3 and Brd4 regulate inflammation in non-gestational tissues.

View Article and Find Full Text PDF

Gestational diabetes mellitus (GDM) imposes serious short- and long-term health problems for mother and baby. An effective therapeutic that can reduce the incidence of GDM and improve long-term maternal and fetal outcomes is a major research priority, crucially important for public health. A lack of knowledge about the underlying pathophysiology of GDM has hampered the development of such therapeutics.

View Article and Find Full Text PDF

Scope: Gestational diabetes mellitus (GDM), which affects up to 20% of pregnant women, is associated with maternal peripheral insulin resistance, low-grade inflammation, and oxidative stress. The flavonoid naringenin has potent anti-diabetic, anti-inflammatory, and anti-oxidative properties; however, its effects in GDM remain unknown. The study aimed to determine the effects of naringenin on glucose metabolism, inflammation, and oxidative stress associated with GDM both in vitro and in vivo.

View Article and Find Full Text PDF

There are currently no effective treatments to prevent spontaneous preterm labor. The precise upstream biochemical pathways that regulate the transition between uterine quiescence during pregnancy and contractility during labor remain unclear. It is well known however that intrauterine inflammation, including infection, is commonly associated with preterm labor.

View Article and Find Full Text PDF

Introduction: Endocan, a member of the proteoglycan family, is involved in a wide range of diseases including obesity and diabetes. The aim of this study was to determine the effect of (i) maternal obesity and gestational diabetes mellitus (GDM) on placental endocan expression; and (ii) endocan knockdown on markers of inflammation.

Methods: Endocan mRNA and protein expression was determined in human placenta from (i) lean and obese and normal glucose tolerant (NGT) pregnant women (n = 10 patients per group); and (ii) women with GDM and BMI-matched NGT women (n = 40 patients per group).

View Article and Find Full Text PDF

Introduction: Infection and inflammation stimulate pro-inflammatory cytokines, prostaglandins and matrix metalloproteinase (MMP)-9, which play a central role in myometrial contractions and rupture of fetal membranes. In human and mouse immune cells, activating transcription factor 3 (ATF3) is a negative regulator of inflammation. No studies have examined the role of ATF3 in human labour.

View Article and Find Full Text PDF