Publications by authors named "Caitlin Timmons"

In contrast to the canonical view that genomes cycle only between haploid and diploid states, many eukaryotes have dynamic genomes that change content throughout an individual's life cycle. However, the few detailed studies of microeukaryotic life cycles render our understanding of eukaryotic genome dynamism incomplete. Foraminifera (Rhizaria) are an ecologically important, yet understudied, clade of microbial eukaryotes with complex life cycles that include changes in ploidy and genome organization.

View Article and Find Full Text PDF

Cancer genomes harbor a catalog of somatic mutations. The type and genomic context of these mutations depend on their causes and allow their attribution to particular mutational signatures. Previous work has shown that mutational signature activities change over the course of tumor development, but investigations of genomic region variability in mutational signatures have been limited.

View Article and Find Full Text PDF

Mobile genetic elements (MGEs) are transient genetic material that can move either within a single organism's genome or between individuals or species. While historically considered "junk" DNA (i.e.

View Article and Find Full Text PDF

Though representing a major component of eukaryotic biodiversity, many microbial eukaryotes remain poorly studied, including the focus of the present work, testate amoebae of the order Arcellinida (Amoebozoa) and non-model lineages of ciliates (Alveolata). In particular, knowledge of genome structures and changes in genome content over the often-complex life cycles of these lineages remains enigmatic. However, the limited available knowledge suggests that microbial eukaryotes have the potential to challenge our textbook views on eukaryotic genomes and genome evolution.

View Article and Find Full Text PDF