Am J Physiol Heart Circ Physiol
June 2009
Extracorporeal circulation provides critical life support in the face of cardiopulmonary or renal failure, but it also introduces a host of unique morbidities characterized by edema formation, cardiac insufficiency, autonomic dysfunction, and altered vasomotor function. We tested the hypothesis that cyclohexanone (CHX), a solvent used in production of extracorporeal circuits and intravenous (IV) bags, leaches into the contained fluids and can replicate these clinical morbidities. Crystalloid fluid samples from circuits and IV bags were analyzed by gas chromatography-mass spectrometry to provide a range of clinical CHX exposure levels, revealing CHX contamination of sampled fluids (9.
View Article and Find Full Text PDFHuman exposure to cold stimulates cutaneous vasoconstriction by activating both sympathetic reflex and locally mediated pathways. Older humans are vulnerable to hypothermia because primary aging impairs thermoregulatory cutaneous vasoconstriction. This article highlights recent findings discussing how age-related decrements in sympathetic neurotransmission contribute directly to thermoregulatory impairment, whereas changes in local cold-induced intracellular signaling suggest a more generalized age-associated vascular dysfunction.
View Article and Find Full Text PDFHuman skin blood flow increases in response to increased body core and local skin temperature via distinct reflex and local mechanisms requiring functional nitric oxide (NO) for full expression. The mechanisms mediating cutaneous vasodilation are impaired with primary aging, resulting in attenuated vasodilation. This article highlights recent findings of how age-related vascular impairments in NO signaling contribute to attenuated cutaneous vasodilation.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
July 2007
Cutaneous vasoconstriction (VC), a critical thermoregulatory response to cold, is generally impaired with aging. However, the effects of aging on local cooling-induced VC and its underlying mechanisms are poorly understood. We tested whether aged skin exhibits attenuated localized cold-induced VC and whether Rho kinase-mediated cold-induced VC is augmented with age.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
April 2007
Cutaneous vasoconstriction (VC) is the initial thermoregulatory response to cold exposure and can be elicited through either whole body or localized skin cooling. However, the mechanisms governing local cold-induced VC are not well understood. We tested the hypothesis that Rho kinase participates in local cold-induced cutaneous VC.
View Article and Find Full Text PDF