Publications by authors named "Caitlin M Nealon"

Tolerance to the antinociceptive effects of cannabinoids represents a significant limitation to their clinical use in managing chronic pain. Tolerance likely results from desensitization and down-regulation of the cannabinoid type 1 receptor (CBR), with CBR desensitization occurring via phosphorylation of CBRs by a G protein-coupled receptor kinase and subsequent association with an arrestin protein. Previous studies have shown that (1) desensitization-resistant S426A/S430A mice exhibit a modest delay in tolerance for Δ-THC and (-)-CP55,940 but a more pronounced disruption in tolerance for WIN 55,212-2 and (2) that c-Jun N-terminal kinase (JNK) signaling may selectively mediate antinociceptive tolerance to morphine compared to other opioid analgesics.

View Article and Find Full Text PDF

Tolerance to cannabinoid agonists can develop through desensitization of the cannabinoid receptor 1 (CB) following prolonged administration. Desensitization results from phosphorylation of CB by a G protein-coupled receptor kinase (GRK), and subsequent association of the receptor with arrestin. Mice expressing a mutant form of CB, in which the serine residues at two putative phosphorylation sites necessary for desensitization have been replaced by non-phosphorylatable alanines (S426A/S430A), display reduced tolerance to Δ-tetrahydrocannabinol (Δ-THC).

View Article and Find Full Text PDF

Currently, more than 78.6 million adults in the United States are obese. A majority of the patient population receiving treatment for pain symptoms is derived from this subpopulation.

View Article and Find Full Text PDF