Compelling evidence demonstrates that some individuals suffering from major depressive disorder (MDD) exhibit increased levels of inflammation. Most studies focus on inflammation-related proteins, such as serum or plasma C-reactive protein (CRP). However, the immune-related modifications associated with MDD may be not entirely captured by CRP alone.
View Article and Find Full Text PDFBackground: Inflammation is a well-known risk factor for depression. Specifically, patients who do not respond to antidepressant treatment show higher levels of inflammatory biomarkers compared with responders. Thus, several studies have investigated the efficacy of anti-inflammatory add-on treatment in this population.
View Article and Find Full Text PDFBackground: Depression and overweight are each associated with abnormal immune system activation. We sought to disentangle the extent to which depressive symptoms and overweight status contributed to increased inflammation and abnormal cortisol levels.
Methods: Participants were recruited through the Wellcome Trust NIMA Consortium.
This study aimed to investigate the role of baseline levels of peripheral inflammation when testing the efficacy of antidepressant augmentation with minocycline in patients with treatment-resistant depression. We conducted a 4-week, placebo-controlled, randomised clinical trial of minocycline (200 mg/day) added to antidepressant treatment in 39 patients selected for elevated levels of serum C-reactive protein (CRP ≥ 1 mg/L), n = 18 randomised to minocycline (M) and n = 21 to placebo (P). The main outcome was the change in Hamilton Depression Rating Scale (HAM-D-17) score from baseline to week 4, expressed both as mean and as full or partial response, in the overall sample and after further stratification for baseline CRP≥3 mg/L.
View Article and Find Full Text PDFWe have corrected this Article post-publication, because Dr. Cattaneo's affiliation details were originally incorrect (she was affiliated with three institutions but is in fact only linked to one: Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia). These changes reflect in both the PDF and HTML versions of this Article.
View Article and Find Full Text PDFThe mRNA expression signatures associated with the 'pro-inflammatory' phenotype of depression, and the differential signatures associated with depression subtypes and the effects of antidepressants, are still unknown. We examined 130 depressed patients (58 treatment-resistant, 36 antidepressant-responsive and 36 currently untreated) and 40 healthy controls from the BIODEP study, and used whole-blood mRNA qPCR to measure the expression of 16 candidate mRNAs, some never measured before: interleukin (IL)-1-beta, IL-6, TNF-alpha, macrophage inhibiting factor (MIF), glucocorticoid receptor (GR), SGK1, FKBP5, the purinergic receptor P2RX7, CCL2, CXCL12, c-reactive protein (CRP), alpha-2-macroglobulin (A2M), acquaporin-4 (AQP4), ISG15, STAT1 and USP-18. All genes but AQP4, ISG15 and USP-18 were differentially regulated.
View Article and Find Full Text PDFChildhood trauma is among the most potent contributing risk factors for depression and is associated with poor treatment response. Hypothalamic-pituitary-adrenal (HPA) axis abnormalities have been linked to both childhood trauma and depression, but the underlying mechanisms are poorly understood. The present study aimed to investigate the link between childhood trauma, HPA axis activity and antidepressant response in patients with depression.
View Article and Find Full Text PDFAn increasingly pertinent issue in psychiatry in recent years is that of the limitations of conventional antidepressants, which are not effective in a large number of patients with major depressive disorder (MDD). Coupled with emerging hypotheses about the role of inflammation in depression, it would appear that it is time to look for alternative treatments for these symptoms.This review will examine an emerging area in psychiatry, that of dietary supplements and the diet in general to treat depressive symptoms, and inflammation in depression.
View Article and Find Full Text PDFBackground: Biological motion perception is served by a network of regions in the occipital, posterior temporal, and parietal lobe, overlapping areas of reduced cortical volume in schizophrenia. The atrophy in these regions is assumed to account for deficits in biological motion perception described in schizophrenia but it is unknown whether the asymmetry of atrophy found in previous studies has a perceptual correlate. Here we look for possible differences in sensitivity to leftward and rightward translation of point-light biological motion in data collected for a previous study and explore its underlying neurobiology using functional imaging.
View Article and Find Full Text PDF