Not discounting the important foetal or placental contribution, the endometrium is a key determinant of pregnancy outcomes. Given the inherently linked processes of menstruation, pregnancy and parturition with the endometrium, further understanding of menstruation will help to elucidate the maternal contribution to pregnancy. Endometrial health can be assessed via menstrual history and menstrual fluid, a cyclically shed, easily and non-invasively accessible biological sample that represents the distinct, heterogeneous composition of the endometrial environment.
View Article and Find Full Text PDFIntroduction: Current research aimed at understanding and preventing stillbirth focuses almost exclusively on the role of the placenta. The underlying origins of poor placental function leading to stillbirth, however, remain poorly understood. There is evidence demonstrating that the endometrial environment in which the embryo implants impacts not only the establishment of pregnancy but also the development of some pregnancy outcomes.
View Article and Find Full Text PDFFront Reprod Health
January 2022
The human endometrium is a remarkable tissue, undergoing ~450 cycles of proliferation, differentiation, shedding (menstruation), repair, and regeneration over a woman's reproductive lifespan. Post-menstrual repair is an extremely rapid and scar-free process, with re-epithelialization of the luminal epithelium completed within 48 h of initiation of shedding. Following menstruation, the functionalis grows from the residual basalis layer during the proliferative phase under the influence of rising circulating estrogen levels.
View Article and Find Full Text PDFAgainst the backdrop of a global pandemic, the Society for Reproductive Biology (SRB) 2021 meeting reunited the Australian and New Zealand reproductive research community for the first time since 2019 and was the first virtual SRB meeting. Despite the recent global research disruptions, the conference revealed significant advancements in reproductive research, the importance of which span human health, agriculture, and conservation. A core theme was novel technologies, including the use of medical microrobots for therapeutic and sperm delivery, diagnostic hyperspectral imaging, and hydrogel condoms with potential beyond contraception.
View Article and Find Full Text PDFEndometrial organoids (EMO) are an important tool for gynecological research but have been limited by generation from (1) invasively acquired tissues and thus advanced disease states and (2) from women who are not taking hormones, thus excluding 50% of the female reproductive-aged population. We sought to overcome these limitations by generating organoids from (1) menstrual fluid (MF; MFO) using a method that enables the concurrent isolation of menstrual fluid supernatant, stromal cells, and leukocytes and (2) from biopsies and hysterectomy samples from women taking hormonal medication (EMO-H). MF was collected in a menstrual cup for 4-6 h on day 2 of menstruation.
View Article and Find Full Text PDFDevelopment of a branching tree in the embryonic lung is crucial for the formation of a fully mature functional lung at birth. Sox9+ cells present at the tip of the primary embryonic lung endoderm are multipotent cells responsible for branch formation and elongation. We performed a genetic screen in murine primary cells and identified aurora kinase b (Aurkb) as an essential regulator of Sox9+ cells ex vivo.
View Article and Find Full Text PDFEndometriosis remains an enigmatic disease of unknown etiology, with delayed diagnosis and poor therapeutic options. This review will discuss the cellular, physiological, and genomic evidence of Sampson's hypothesis of retrograde menstruation as a cause of pelvic endometriosis and as the basis of phenotypic heterogeneity of the disease. We postulate that collaborative research at the single cell level focused on unlocking the cellular, physiological, and genomic mechanisms of endometriosis will be accompanied by advances in personalized diagnosis and therapies that target unique subtypes of endometriosis disease.
View Article and Find Full Text PDFEndometrial mesenchymal stem cells (eMSC) drive the extraordinary regenerative capacity of the human endometrium. Clinical application of eMSC for therapeutic purposes is hampered by spontaneous differentiation and cellular senescence upon large-scale expansion . A83-01, a selective transforming growth factor-β receptor (TGFβ-R) inhibitor, promotes expansion of eMSC in culture by blocking differentiation and senescence, but the underlying mechanisms are incompletely understood.
View Article and Find Full Text PDFBackground: The lung is constantly exposed to environmental challenges and must rapidly respond to external insults. Mechanisms involved in the repair of the damaged lung involve expansion of different epithelial cells to repopulate the injured cellular compartment. However, factors regulating cell proliferation following lung injury remain poorly understood.
View Article and Find Full Text PDFThe isolation and characterization of lung stem and progenitor cells represent an important step towards the understanding of lung repair after injury, lung disease pathogenesis and the identification of the target cells of transformation in lung carcinogenesis. Different approaches using prospective isolation of progenitor cells by flow cytometry or lineage-tracing experiments in mouse models of lung injury have led to the identification of distinct progenitor subpopulations in different morphological regions of the adult lung. Genetically defined mouse models of lung cancer are offering new perspectives on the cells of origin of different subtypes of lung cancer.
View Article and Find Full Text PDFIntroduction: Unrestricted somatic stem cells (USSC) derived from umbilical cord blood are an attractive alternative to human embryonic stem cells (hESC) for cellular therapy. USSC are capable of forming cells representative of all three germ line layers. The aim of this study was to determine the potential of USSC to form definitive endoderm following induction with Activin A, a protein known to specify definitive endoderm formation of hESC.
View Article and Find Full Text PDFBackground: Although bronchopulmonary dysplasia is closely associated with an arrest of alveolar development and pulmonary capillary dysplasia, it is unknown whether these two features are causally related. To investigate the relationship between pulmonary capillaries and alveolar formation, we partially embolized the pulmonary capillary bed.
Methods: Partial pulmonary embolization (PPE) was induced in chronically catheterized fetal sheep by injection of microspheres into the left pulmonary artery for 1 day (1d PPE; 115d gestational age; GA) or 5 days (5d PPE; 110-115d GA).
Growth and development of the fetal lungs is critically dependent on the degree to which the lungs are expanded by liquid; increases in fetal lung expansion accelerate lung growth, whereas reductions in lung expansion cause lung growth to cease. The mechanisms mediating expansion-induced lung growth are unknown but likely include alterations in the expression of genes that regulate lung cell proliferation. Our aim was to isolate and identify genes that are up- or downregulated by increased fetal lung expansion.
View Article and Find Full Text PDF