Publications by authors named "Caitlin E McOmish"

The glutamatergic system directs central nervous system (CNS) neuronal activity and may underlie various neuropsychiatric disorders. Glutamate transmits its effects through multiple receptor classes. Class II metabotropic glutamate receptors, mGlu2 and mGlu3, play an important role in regulating synaptic release of different neurotransmitter systems and consequently modulate signaling across several neuronal subtypes.

View Article and Find Full Text PDF

In acute organ injuries, mitochondria are often dysfunctional, and recent research has revealed that recovery of mitochondrial and renal functions is accelerated by induction of mitochondrial biogenesis (MB). We previously reported that the nonselective 5-HT2 receptor agonist DOI [1-(4-iodo-2,5-dimethoxyphenyl)propan-2-amine] induced MB in renal proximal tubular cells (RPTCs). The goal of this study was to determine the role of 5-HT2 receptors in the regulation of mitochondrial genes and oxidative metabolism in the kidney.

View Article and Find Full Text PDF

Introduction: The glutamatergic system has recently been implicated in the pathogenesis and treatment of major depressive disorders(MDD) and mGlu2/3 receptors play an important role in regulating glutamatergic tone. We therefore measured cortical levels of mGlu2/3 to determine if they were changed in MDD.

Methods: Binding parameters for [(3)H]LY341495 (mGlu2/3 antagonist) were determined to allow optimized in situ binding with autoradiography to be completed using a number of CNS regions.

View Article and Find Full Text PDF

Schizophrenia arises from a complex interplay between genetic and environmental factors. Abnormalities in glutamatergic signaling have been proposed to underlie the emergence of symptoms, in light of various lines of evidence, including the psychotomimetic effects of NMDA receptor antagonists. Metabotropic glutamate receptor 5 (mGlu5) has also been implicated in the disorder, and has been shown to physically interact with NMDA receptors.

View Article and Find Full Text PDF

Psychiatric disorders affect a substantial proportion of the population worldwide. This high prevalence, combined with the chronicity of the disorders and the major social and economic impacts, creates a significant burden. As a result, an important priority is the development of novel and effective interventional strategies for reducing incidence rates and improving outcomes.

View Article and Find Full Text PDF

The need for safer, more effective therapeutics for the treatment of schizophrenia is widely acknowledged. To optimally target novel pharmacotherapies, in addition to establishing the mechanisms responsible for the beneficial effects of antipsychotics, the pathways underlying the most severe side effects must also be elucidated. Here we investigate the role of serotonin 2A (5-HT(2A)), serotonin 2C (5-HT(2C)), and dopamine 2 receptors (D₂) in mediating adverse effects associated with canonical first- and second-generation antipsychotic drugs in mice.

View Article and Find Full Text PDF

The contributions of genetic risk factors to susceptibility for brain disorders are often so closely intertwined with environmental factors that studying genes in isolation cannot provide the full picture of pathogenesis. With recent advances in our understanding of psychiatric genetics and environmental modifiers we are now in a position to develop more accurate animal models of psychiatric disorders which exemplify the complex interaction of genes and environment. Here, we consider some of the insights that have emerged from studying the relationship between defined genetic alterations and environmental factors in rodent models.

View Article and Find Full Text PDF

Phospholipase C-β1 (PLC-β1) is a critical component of multiple signalling pathways downstream of neurotransmitter receptors. Mice lacking this enzyme display a striking behavioural phenotype with relevance to human psychiatric disease. Glutamatergic dysfunction is strongly associated with several abnormal behavioural states and may underlie part of the phenotype of the phospholipase C-β1 knockout (KO) mouse.

View Article and Find Full Text PDF

Objectives: Regulator of G-protein signalling 4 (RGS4) modulates signal transduction through several neurotransmitter receptor systems associated with the pathology of schizophrenia. A reported decrease in RGS4 expression in the prefrontal cortex of schizophrenia patients followed by supporting evidence from association studies implicated RGS4 as a susceptibility gene for schizophrenia. Subsequent efforts to extend these findings in post-mortem brain tissue have produced conflicting results.

View Article and Find Full Text PDF

The complexity of the genetics underlying schizophrenia is highlighted by the multitude of molecular pathways that have been reported to be disrupted in the disorder including muscarinic, serotonergic, and glutamatergic signaling systems. It is of interest, therefore, that phospholipase C-beta1 (PLC-beta1) acts as a point of convergence for these pathways during cortical development and plasticity. These signaling pathways, furthermore, are susceptible to modulation by RGS4, one of the more promising candidate genes for schizophrenia.

View Article and Find Full Text PDF

There is a growing awareness of the central role played by environmental factors in many of the most debilitating neural disorders. Epidemiological studies have suggested a complex balance between genetic and environmental factors in the pathogenesis of neurological and psychiatric conditions. The use of accurate animal models, combined with experimental manipulations such as environmental enrichment, has shown that increased sensory, cognitive and motor stimulation has beneficial effects in a range of CNS disorders, including Huntington's, Alzheimer's, Parkinson's and other neurodegenerative diseases.

View Article and Find Full Text PDF