Publications by authors named "Caitlin E Conn"

We evaluated an alternative small stem assay (AltSSA) for blight resistance in backcross hybrid chestnut trees (). Whereas standard small stem assays (SSAs) are done by inoculating small incisions in stems, in our AltSSA, 4- to 5-mm stems are cut off, and the exposed (living) stem tips are inoculated with discs of inoculum and temporarily covered with plastic sleeves. Intended primarily for forward selection, this method was designed to be easy to implement, to consistently induce cankering, and to better enable seedling recovery via the development of lateral shoots from the lower stem.

View Article and Find Full Text PDF
Article Synopsis
  • Karrikins (KARs) are smoke-derived chemicals that enhance the germination of many plants, with specific attention to lettuce which is responsive to karrikinolide (KAR1) but less so to other forms.
  • The study revealed that lettuce has two KARRIKIN INSENSITIVE2 (KAI2) genes, with LsKAI2b showing higher expression and conferring sensitivity to KAR1, implying it is the primary receptor for this response in lettuce.
  • Analysis of KAI2 proteins across different species indicated key residues (96, 124, 139, and 161) influence ligand specificity, suggesting that fine-tuning at these locations via mutations contributes to the varied responses to KARs observed
View Article and Find Full Text PDF

Parasitic plants in the genus Striga, commonly known as witchweeds, cause major crop losses in sub-Saharan Africa and pose a threat to agriculture worldwide. An understanding of Striga parasite biology, which could lead to agricultural solutions, has been hampered by the lack of genome information. Here, we report the draft genome sequence of Striga asiatica with 34,577 predicted protein-coding genes, which reflects gene family contractions and expansions that are consistent with a three-phase model of parasitic plant genome evolution.

View Article and Find Full Text PDF

A set of PpKAI2 - LIKE paralogs that may encode strigolactone receptors in Physcomitrella patens were identified through evolutionary, structural, and transcriptional analyses, suggesting that strigolactone perception may have evolved independently in basal land plants in a similar manner as spermatophytes. Carotenoid-derived compounds known as strigolactones are a new class of plant hormones that modulate development and interactions with parasitic plants and arbuscular mycorrhizal fungi. The strigolactone receptor protein DWARF14 (D14) belongs to the α/β hydrolase family.

View Article and Find Full Text PDF

The α/β-hydrolases KAI2 and D14 are paralogous receptors for karrikins and strigolactones, two classes of plant growth regulators with butenolide moieties. KAI2 and D14 act in parallel signaling pathways that share a requirement for the F-box protein MAX2, but produce distinct growth responses by regulating different members of the SMAX1-LIKE/D53 family. kai2 and max2 mutants share seed germination, seedling growth, leaf shape, and petiole orientation phenotypes that are not found in d14 or SL-deficient mutants.

View Article and Find Full Text PDF

Obligate parasitic plants in the Orobanchaceae germinate after sensing plant hormones, strigolactones, exuded from host roots. In Arabidopsis thaliana, the α/β-hydrolase D14 acts as a strigolactone receptor that controls shoot branching, whereas its ancestral paralog, KAI2, mediates karrikin-specific germination responses. We observed that KAI2, but not D14, is present at higher copy numbers in parasitic species than in nonparasitic relatives.

View Article and Find Full Text PDF