We find that laser-induced local melting attracts and deforms grain boundaries in 2D colloidal crystals. When a melted region in contact with the edge of a crystal grain recrystallizes, it deforms the grain boundary-this attraction is driven by the multiplicity of deformed grain boundary configurations. Furthermore, the attraction provides a method to fabricate artificial colloidal crystal grains of arbitrary shape, enabling new experimental studies of grain boundary dynamics and ultimately hinting at a novel approach for fabricating materials with designer microstructures.
View Article and Find Full Text PDF