Publications by authors named "Caitlin A Lawson"

The coral holobiont is underpinned by complex metabolic exchanges between different symbiotic partners, which are impacted by environmental stressors. The chemical diversity of the compounds produced by the holobiont is high and includes primary and secondary metabolites, as well as volatiles. However, metabolites and volatiles have only been characterised in isolation so far.

View Article and Find Full Text PDF

The urgency of responding to climate change for corals necessitates the exploration of innovative methods to swiftly enhance our understanding of crucial processes. In this study, we employ an integrated chemical omics approach, combining elementomics, metabolomics, and volatilomics methodologies to unravel the biochemical pathways associated with the thermal response of the coral symbiont, Symbiodiniaceae . We outline the complimentary sampling approaches and discuss the standardised data corrections used to allow data integration and comparability.

View Article and Find Full Text PDF

Introduction: Biogenic volatile organic compounds (BVOCs) are emitted by all organisms as intermediate or end-products of metabolic processes. Individual BVOCs perform important physiological, ecological and climatic functions, and collectively constitute the volatilome-which can be reflective of organism taxonomy and health. Although BVOC emissions of tropical benthic reef taxa have recently been the focus of multiple studies, emissions derived from their temperate counterparts have never been characterised.

View Article and Find Full Text PDF

The symbiosis between cnidarians and dinoflagellates underpins the success of reef-building corals in otherwise nutrient-poor habitats. Alterations to symbiotic state can perturb metabolic homeostasis and thus alter the release of biogenic volatile organic compounds (BVOCs). While BVOCs can play important roles in metabolic regulation and signalling, how the symbiotic state affects BVOC output remains unexplored.

View Article and Find Full Text PDF

The establishment and maintenance of the symbiosis between a cnidarian host and its dinoflagellate symbionts is central to the success of coral reefs. To explore the metabolite production underlying this symbiosis, we focused on a group of low molecular weight secondary metabolites, biogenic volatile organic compounds (BVOCs). BVOCs are released from an organism or environment, and can be collected in the gas phase, allowing non-invasive analysis of an organism's metabolism (i.

View Article and Find Full Text PDF

Terrestrial ecosystems emit large quantities of biogenic volatile organic compounds (BVOCs), many of which play important roles in abiotic stress responses, pathogen and grazing defences, inter- and intra-species communications, and climate regulation. Conversely, comparatively little is known about the diversity and functional potential of BVOCs produced in the marine environment, especially in highly productive coral reefs. Here we describe the first 'volatilomes' of two common reef-building corals, Acropora intermedia and Pocillopora damicornis, and how the functional potential of their gaseous emissions is altered by heat stress events that are driving rapid deterioration of coral reef ecosystems worldwide.

View Article and Find Full Text PDF

Geraniol is a commercially relevant plant-derived monoterpenoid that is a main component of rose essential oil and used as insect repellent. Geraniol is also a key intermediate compound in the biosynthesis of the monoterpenoid indole alkaloids (MIAs), a group of over 2000 compounds that include high-value pharmaceuticals. As plants naturally produce extremely small amounts of these molecules and their chemical synthesis is complex, industrially sourcing these compounds is costly and inefficient.

View Article and Find Full Text PDF

Symbiodiniaceae are a diverse family of marine dinoflagellates, well known as coral endosymbionts. Isolation and in vitro culture of Symbiodiniaceae strains for physiological studies is a widely adopted tool, especially in the context of understanding how environmental stress perturbs Symbiodiniaceae cell functioning. While the bacterial microbiomes of corals often correlate with coral health, the bacterial communities co-cultured with Symbiodiniaceae isolates have been largely overlooked, despite the potential of bacteria to significantly influence the emergent physiological properties of Symbiodiniaceae cultures.

View Article and Find Full Text PDF

Biogenic volatile organic compounds (BVOCs) influence organism fitness by promoting stress resistance and regulating trophic interactions. Studies examining BVOC emissions have predominantly focussed on terrestrial ecosystems and atmospheric chemistry - surprisingly, highly productive marine ecosystems remain largely overlooked. Here we examined the volatilome (total BVOCs) of the microalgal endosymbionts of reef invertebrates, Symbiodiniaceae.

View Article and Find Full Text PDF

Dinoflagellates of the genus Symbiodinium underpin the survival and ecological success of corals. The use of cultured strains has been particularly important to disentangle the complex life history of Symbiodinium and their contribution to coral host physiology. However, these cultures typically harbour abundant bacterial communities which likely play important, but currently unknown, roles in Symbiodinium biology.

View Article and Find Full Text PDF